
ZTPServer Documentation
Release 1.2.0

Arista Networks

December 05, 2014

Contents

1 Highlights 3

2 Features 5
2.1 Overview . 5
2.2 Installation . 11
2.3 Startup . 15
2.4 Configuration . 17
2.5 Examples . 30
2.6 Tips and tricks . 36
2.7 Internals . 38
2.8 Glossary of terms . 50
2.9 Support . 50
2.10 License . 59

HTTP Routing Table 61

Python Module Index 63

i

ii

ZTPServer Documentation, Release 1.2.0

ZTPServer provides a bootstrap environment for Arista EOS based products. It is written mostly in Python and
leverages standard protocols like DHCP (for boot functions), HTTP (for bi-directional transport), XMPP and syslog
(for logging). Most of the configuration files are YAML based.

This open source project is maintained by the Arista Networks EOS+ services organization.

Contents 1

http://arista.com/

ZTPServer Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Highlights

• Extends the basic capability of EOS’s zero-touch provisioning feature in order to allow more robust provisioning
activities

• Is extensible, for easy integration into various network environments

• Can be run natively in EOS or any Linux server

• Arista EOS+ led community open source project

3

ZTPServer Documentation, Release 1.2.0

4 Chapter 1. Highlights

CHAPTER 2

Features

• Dynamic startup-config generation and automatic install

• Image and file system validation and standardization

• Connectivity validation and topology based auto-provisioning

• Config and device templates with dynamic resource allocation

• Zero-touch replacement and upgrade capabilities

• User extensible actions

• Email, XMPP, syslog based

2.1 Overview

ZTPServer provides a robust server which enables comprehensive bootstrap solutions for Arista network elements.
ZTPserver takes advantage of the the ZeroTouch Provisioning (ZTP) feature in Arista’s EOS (Extensible Operating
System) which enables a node to connect to a provisioning server whenever a valid configuration file is missing from
the internal flash storage.

ZTPServer provides a number of features that extend beyond simply loading a configuration file and a boot image on
a node, including:

• sending an advanced bootstrap client to the node

• mapping each node to an individual definition which describes the bootstrap steps specific to that node

• defining configuration templates and actions which can be shared by multiple nodes - the actions can be cus-
tomised using statically-defined or dynamically-generated attributes

• implementing environment-specific actions which integrate with external/internal management systems

• validation topology using a simple syntax for expressing LLDP neighbor adjacencies

• enabling Zero Touch Replacement, as well as configuration backup and management

ZTPServer is written in Python and leverages standard protocols like DHCP (DHCP options for boot functions),
HTTP(S) (for bi-directional transport), XMPP and syslog (for logging). Most of the configuration files are YAML-
based.

Highlights:

• extends the basic capability of ZTP (in EOS) to allow more robust provisioning activities

• is extensible and easy to integrate into any operational environment

5

ZTPServer Documentation, Release 1.2.0

• can be run natively in EOS or on a separate server

• is developed by a community lead by Arista’s EOS+ team as an open-source project

Features:

• automated configuration file generation

• image and file system validation and standardization

• cable and connectivity validation

• topology-based auto-provisioning

• configuration templating with resource allocation (for dynamic deployments)

• Zero Touch Replacement and software upgrade capabilities

• user extensible actions

• XMPP and syslog-based logging and accounting

2.1.1 ZTP Intro

Zero Touch Provisioning (ZTP) is a feature in Arista EOS’s which, in the absence of a valid startup-config file, enables
nodes to be configured over the networks.

The basic flow is as follows:

• check for startup-config, if absent, enter ZTP mode

• send DHCP requests on all connected interfaces

• if a DHCP response is received with Option 67 defined (bootfile-name), retrieve that file

• if that file is a startup-config, then save it to stuartup-config and reboot

• if that file is an executable, then execute it. Common actions executed this way include upgrading the EOS im-
age, downloading extension packages, and dynamically building a startup-config file. (ZTPServer’s bootstrap
script is launched this way)

• reboot with the new configuration

See the ZTP Tech Bulletin and the Press Release for more information on ZTP.

2.1.2 Architecture

There are 2 primary components of the ZTPServer implementation:

• the server or ZTPServer instance AND

• the client or bootstrap (a process running on each node, which connects back to the server in order to provision
the node)

6 Chapter 2. Features

http://www.arista.com/en/products/eos/automation/articletabs/0
https://www.arista.com/assets/data/pdf/TechBulletins/Tech_bulletin_ZTP.pdf
http://www.arista.com/en/company/news/press-release/345-pr-20110215-01

ZTPServer Documentation, Release 1.2.0

2.1.3 Server

The server can run on any standard x86 server. Currently the only OS-es tested are Linux and MacOS, but theoretically
any system that supports Python could run ZTPServer. The server provides a Python WSGI compliant interface, along
with a standalone HTTP server. The built-in HTTP server runs by default on port 8080 and provides bidirectional file
transport and communication for the bootstrap process.

The primary methods of provisioning a node are:

• statically via mappings between node IDs (serial number or system MAC address) and configuration definitions
OR

• dynamically via mapping between topology information (LLDP neighbors) and configuration definitions

The definitions associated with the nodes contain a set of actions that can perform a variety of functions that ultimately
lead to a final device configuration. Actions can use statically configured attributes or leverage configuration templates
and dynamically allocated resources (via resource pools) in order to generate the system configuration. Definitions,
actions, attributes, templates, and resources are all defined in YAML files.

2.1. Overview 7

ZTPServer Documentation, Release 1.2.0

2.1.4 Client

The client or bootstrap file is retrieved by the node via an HTTP GET request made to the ZTPServer (the URL of
the file is retrieved via DHCP option 67). This file executes locally and gathers system and LLDP information from
the node and sends it back to the ZTPServer. Once the ZTPServer processes the information and confirms that it can
provision the node, the client makes a request to the server for a definition file - this file will contain the list of all
actions which need to be executed by the node in order to provision itself.

Throughout the provisioning process the bootstrap client can log all steps via both local and remote syslogs, as well
as XMPP.

2.1.5 ZTP Client-Server Message Flows

The following diagram show the flow of information during the bootstrap process. The lines in red correspond to the
ZTP feature in EOS, while the lines in blue highlight the ZTPServer operation:

(Red indicates Arista EOS flows. Blue indicates the bootstrap client.)

8 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

2.1. Overview 9

ZTPServer Documentation, Release 1.2.0

2.1.6 Topology Validation

ZTPServer provides a powerful topology validation engine via either neighbordb or pattern files. As part of
the bootstrap process for each node, the LLDP information received on all ports is sent to the ZTPServer and matched
against either neighbordb or a node-specific pattern file (if a node is already configured on the server). Both are
YAML files that are use a simple format to express strongly and loosely typed topology patterns. Pattern entries are
processed top down and can include local or globally-defined variables (including regular expressions).

Patterns in neighbordb match nodes to definitions (dynamic mode), while node-specific pattern files are used for
cabling and connectivity validation (static mode).

Topology-validation can be disabled:

• globally (disable_topology_validation=true in the server’s global configuration file) OR

• on a per-node basis, using open patterns in the pattern files (see the Pattern file configuration section for more
details)

2.1.7 Operational modes

There are several operational modes for ZTPServer, explained below. See Neighbordb pattern examples to see how to
use them.

System ID-based provisioning with no topology validation

Via node-specific folder:

10 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

• a folder corresponding to the node’s system ID is created on the server before bootstrap

• a definition file, startup-config file or both is/are placed in the folder

• topology validation is disabled globally (in the global configuration file) or via an open pattern in the pattern file
located in the node-specific folder

Via neighbordb:

• a pattern which matches the node’s system ID is created in neighbordb before bootstrap

• neighbordb pattern points to a definition file

• neighbordb pattern contains no topology information (LLDP neighbors)

• a node-specific folder with the definition and an open pattern will be created during the bootstrap process

System ID-based provisioning with topology validation

Via node-specific folder:

• a folder corresponding to the node’s system ID is created on the server before bootstrap

• a definition file, startup-config file or both is/are placed in the folder

• topology validation is enabled globally (in the global configuration file) and the topology information is config-
ured in the pattern file located in the node-specific folder

Via neighbordb:

• a pattern which matches the node’s system ID is created in neighbordb before bootstrap

• neighbordb pattern points to a definition file

• neighbordb pattern contains topology information (LLDP neighbors)

• a node-specific folder with the definition and a pattern containing the matched toplogy information will be
created during the bootstrap process

Topology-based provisioning

• a pattern which matches the topology information (LLDP neighbord) is created in neighbordb before bootstrap

• neighbordb pattern points to a definition file

• a node-specific folder with the definition and a pattern containing the matched toplogy information will be
created during the bootstrap process

2.2 Installation

2.2. Installation 11

ZTPServer Documentation, Release 1.2.0

• Requirements
• Installation Options

– Turn-key VM Creation
– PyPI Package (pip install)
– Manual installation

• Additional services
– Allow ZTPServer Connections In Through The Firewall
– Configure the DHCP Service
– Enable and start the dhcpd service

2.2.1 Requirements

Server:

• Python 2.7 or later (https://www.python.org/download/releases)

• routes 2.0 or later (https://pypi.python.org/pypi/Routes)

• webob 1.3 or later (http://webob.org/)

• PyYaml 3.0 or later (http://pyyaml.org/)

Client:

• EOS 4.12.0 or later (ZTPServer 1.1+)

• EOS 4.13.3 or later (ZTPServer 1.0)

Note: We recommend using a Linux distribution which has Python 2.7 as its standard Python install (e.g. yum in
Centos requires Python 2.6 and a dual Python install can be fairly tricky and buggy). This guide was written based
ZTPServer v1.1.0 installed on Fedora 20.

2.2.2 Installation Options

• Turn-key VM Creation

• PyPI Package (pip install)

• Manual installation

Turn-key VM Creation

The turn-key VM option leverages Packer to auto generate a VM on your local system. Packer.io automates the
creation of the ZTPServer VM. All of the required packages and dependencies are installed and configured. The
current Packer configuration allows you to choose between VirtualBox or VMWare as your hypervisor and each can
support Fedora 20 or Ubuntu Server 12.04.

VM Specification:

• 7GB Hard Drive

• 2GB RAM

• Hostname ztps.ztps-test.com

– eth0 (NAT) DHCP

12 Chapter 2. Features

https://www.python.org/download/releases
https://pypi.python.org/pypi/Routes
http://webob.org/
http://pyyaml.org/
http://eos.arista.com
http://eos.arista.com
http://www.packer.io/

ZTPServer Documentation, Release 1.2.0

– eth1 (hostonly) 172.16.130.10

• Firewalld/UFW disabled

• Users

– root/eosplus

– ztpsadmin/eosplus

• Python 2.7.5 with PIP

• DHCP installed with Option 67 configured (eth1 only)

• BIND DNS server installed with zone ztps-test.com

– wildcard forwarding rule passing all other queries to 8.8.8.8

– SRV RR for im.ztps-test.com

• rsyslog-ng installed; Listening on UDP and TCP (port 514)

• ejabberd (XMPP server) configured for im.ztps-test.com

– XMPP admin user: ztpsadmin/eosplus

• httpd installed and configured for ZTPServer (mod_wsgi)

• ZTPServer installed

• ztpserver-demo repo files pre-loaded

See the Packer VM code and documentation as well as the ZTPServer demo files for the Packer VM.

PyPI Package (pip install)

ZTPServer may be installed as a PyPI package.

This option assumes you have a server with Python and pip pre-installed. See installing pip.

Once pip is installed, type:

bash-3.2$ pip install ztpserver

The pip install process will install all dependencies and run the install script, leaving you with a ZTPServer instance
ready to configure.

Manual installation

Download source:

• Latest Release on GitHub

– Previous releases

• Active Stable: (GitHub) (ZIP) (TAR)

• Development: (GitHub) (ZIP) (TAR)

Once the above system requirements are met, you can use the following git command to pull the develop branch into
a local directory on the server where you want to install ZTPServer:

bash-3.2$ git clone https://github.com/arista-eosplus/ztpserver.git

Or, you may download the zip or tar archive and expand it.

2.2. Installation 13

https://github.com/arista-eosplus/packer-ztpserver
https://github.com/arista-eosplus/ztpserver-demo
https://pypi.python.org/pypi/ztpserver
https://pypi.python.org/pypi/ztpserver
https://pip.pypa.io/en/latest/installing.html
https://github.com/arista-eosplus/ztpserver/releases/latest
https://github.com/arista-eosplus/ztpserver/releases/
https://github.com/arista-eosplus/ztpserver/tree/master
https://github.com/arista-eosplus/ztpserver/zipball/master
https://github.com/arista-eosplus/ztpserver/tarball/master
https://github.com/arista-eosplus/ztpserver/tree/develop
https://github.com/arista-eosplus/ztpserver/zipball/develop
https://github.com/arista-eosplus/ztpserver/tarball/develop

ZTPServer Documentation, Release 1.2.0

bash-3.2$ wget https://github.com/arista-eosplus/ztpserver/tarball/master
bash-3.2$ tar xvf <filename>

or
bash-3.2$ unzip <filename>

Change in to the ztpserver directory, then checkout the release desired:

bash-3.2$ cd ztpserver
bash-3.2$ git checkout v1.1.0

Execute setup.py to build and then install ZTPServer:

[user@localhost ztpserver]$ sudo python setup.py build
running build
running build_py
...

[root@localhost ztpserver]# sudo python setup.py install
running install
running build
running build_py
running install_lib
...

2.2.3 Additional services

Note: If using the Turn-key VM Creation, all of the steps, below, will have been completed, please reference the VM
documentation.

Allow ZTPServer Connections In Through The Firewall

Be sure your host firewall allows incoming connections to ZTPServer. The standalone server runs on port TCP/8080
by default.

Firewalld examples:

• Open TCP/<port> through firewalld bash-3.2$ firewall-cmd --zone=public
--add-port=<port>/tcp [--permanent]

• Stop firewalld bash-3.2$ systemctl status firewalld

• Disable firewalld bash-3.2$ systemctl disable firewalld

Note: If using the Turn-key VM Creation, all the steps from below will be been completed automatically.

Configure the DHCP Service

Set up your DHCP infrastructure to server the full path to the ZTPServer bootstrap file via option 67. This can be
performed on any DHCP server. Below you can see how you can do that for ISC dhcpd.

Get dhcpd:

RedHat: bash-3.2$ sudo yum install dhcp

Ubuntu: bash-3.2$ sudo apt-get install isc-dhcp-server

14 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

Add a network (in this case 192.168.100.0/24) for servicing DHCP requests for ZTPServer:

subnet 192.168.100.0 netmask 255.255.255.0 {
range 192.168.100.200 192.168.100.205;
option routers 192.168.100.1;
option domain-name-servers <ipaddr>;
option domain-name "<org>";
option bootfile-name "http://<ztp_hostname_or_ip>:<port>/bootstrap";

}

Enable and start the dhcpd service

RedHat (and derivative Linux implementations)

bash-3.2# sudo /usr/bin/systemctl enable dhcpd.service bash-3.2# sudo
/usr/bin/systemctl start dhcpd.service

Ubuntu (and derivative Linux implementations)

bash-3.2# sudo /usr/sbin/service isc-dhcp-server start

Check that /etc/init/isc-dhcp-server.conf is configured for automatic startup on boot.

Edit the global configuration file located at /etc/ztpserver/ztpserver.conf (if needed). See the Global
configuration file options for more information.

2.3 Startup

• Apache (mod_wsgi)
• Standalone debug server

HTTP Server Deployment Options

ZTPServer is a Python WSGI compliant application that can be deployed behind any WSGI web server or run as a
standalone application.

After initial startup, any change to ztpserver.conf will require a server restart. However, all other files are read
on-demand, therefore no server restart is required to pick up changes in definitions, neighbordb, resources, etc.

Note: The ztps standalone server executable is for demo and testing use ONLY. It is NOT recommended for
production use!

2.3.1 Apache (mod_wsgi)

If using Apache, this section provides instructions for setting up ZTPServer using mod_wsgi. This section assumes
the reader is familiar with Apache and has already installed mod_wsgi. For details on how to install mod_wsgi, please
see the modwsgi Quick Installation Guide.

To enable ZTPServer for an Apache server, we need to add the following WSGI configuration to the Apache
config. A good location might be to create /etc/httpd/conf.d/ztpserver.conf or /etc/apache2/sites-
enabled/ztpserver.conf:

2.3. Startup 15

https://code.google.com/p/modwsgi/wiki/QuickInstallationGuide

ZTPServer Documentation, Release 1.2.0

LoadModule wsgi_module modules/mod_wsgi.so
Listen 8080

<VirtualHost *:8080>

WSGIDaemonProcess ztpserver user=www-data group=www-data threads=50
WSGIScriptAlias / /etc/ztpserver/ztpserver.wsgi
Required for RHEL
#WSGISocketPrefix /var/run/wsgi

<Location />
WSGIProcessGroup ztpserver
WSGIApplicationGroup %{GLOBAL}

For Apache <= 2.2, use Order and Allow
Order deny,allow
Allow from all
For Apache >= 2.4, Allow is replaced by Require
Require all granted

</Location>

Override default logging locations for Apache
#ErrorLog /path/to/ztpserver_error.log
#CustomLog /path/to/ztpserver_access.log

</VirtualHost>

WSGIScriptAlias should point to the ztpserver.wsgi file which is installed by default under
/etc/ztpserver/ztpserver.wsgi. You will notice that the <Location /> directive is set to the root directory.
This will enable ZTPServer to listen at the base server URL:

http://<host_ip>:8080/bootstrap

If you would like to run the ZTPServer under a subdirectory, leave the Apache configuration as it is listed above and
modify the ZTPServer configuration to include the URL path prefix (/ztpserver in this example).

For example, edit the default configuration file found at /etc/ztpserver/ztpserver.conf by modifying or
adding the following line under the [default] section:

server_url = http://<host_ip>:8080/ztpserver/

where /ztpserver/ is the subdirectory you would like the wsgi to listen. Once completed, restart Apache and you should
now be able to access your ZTPServer at the specified URL. To test, simply use curl - for example:

curl http://<host_ip>:8080/ztpserver/bootstrap

If everything is configured properly, curl should be able to retrieve the bootstrap script. If there is a problem, all of the
ZTPServer log messages should be available under the Apache server error logs. See the ErrorLog directive in your
Apache configuration to determine the location of the error log.

Note: File Permissions - Apache mod_wsgi will run ztpserver.wsgi as the specified system user in your Apache
config. This use must be able to read/write to the files in /usr/share/ztpserver (or whereever you created
your data_root.)

Note: SELinux - Apache will need to read and write to files in /usr/share/ztpserver. Therefore, you
might need to update/assign an SELinux user/role/type to these files. You can do something like chcon -R -h
system_u:object_r:httpd_sys_script_rw_t /usr/share/ztpserver to accomplish that.

16 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

2.3.2 Standalone debug server

Note: ZTPServer ships with a single-threaded server that is sufficient for testing or demonstration, only. It is not
recommended for use with more than 10 nodes.

To start the standalone ZTPServer, exec the ztps binary:

[root@ztpserver ztpserver]# ztps
INFO: [app:115] Logging started for ztpserver
INFO: [app:116] Using repository /usr/share/ztpserver
Starting server on http://<ip_address>:<port>

The following options may be specified when starting the ztps binary:

-h, --help show this help message and exit
--version, -v Displays the version information
--conf CONF, -c CONF Specifies the configuration file to use
--validate FILENAME Runs a validation check on neighbordb
--debug Enables debug output to the STDOUT

When ZTPServer starts, it reads the path information to neighbordb and other files from the global configuration file.
Assuming that the DHCP server is serving DHCP offers which include the path to the ZTPServer bootstrap script in
Option 67 and that the EOS nodes can access the bootstrap file over the network, the provisioning process should now
be able to automatically start for all the nodes with no startup configuration.

2.4 Configuration

• Overview
• Global configuration file
• Bootstrap configuration
• Static provisioning - overview
• Static provisioning - startup_config
• Static provisioning - definition
• Static provisioning - attributes
• Static provisioning - pattern
• Static provisioning - log
• Dynamic provisioning - overview
• Dynamic provisioning - neighbordb

– variables
– unique_id
– port_name
– system_name:neighbor_port_name
– port_name: system_name:neighbor_port_name

• Definitions
• Actions
• Resource pools
• Other files

2.4. Configuration 17

ZTPServer Documentation, Release 1.2.0

2.4.1 Overview

The ZTPServer uses a series of YAML files to provide its various configuration and databases. Use of the YAML
format makes the files easier to read and makes it easier and more intuitive to add/update entries (as opposed to other
files formats such as JSON, or binary formats such as SQL).

The ZTPServer components are housed in a single directory defined by the data_root variable in
the global configuration file. The directory location will vary depending on the configuration in
/etc/ztpserver/ztperserver.conf.

The following directory structure is normally used:

[data_root]
bootstrap/

bootstrap
bootstrap.conf

nodes/
<unique_id)>/

startup-config
definition
pattern
.node
attributes

actions/
files/
definitions/
resources/
neighbordb

2.4.2 Global configuration file

The global ZTPServer configuration file can be found at /etc/ztpserver/ztpserver.conf. It uses the INI
format (for details, see top section of Python configparser).

An alternative location for the global configuration file may be specified by using the --conf command line option:

e.g.

(bash)# ztps --help
usage: ztpserver [options]

optional arguments:
-h, --help show this help message and exit
--version, -v Displays the version information

--conf CONF, -c CONF Specifies the configuration file to use
--validate FILENAME Runs a validation check on neighbordb
--debug Enables debug output to the STDOUT

(bash)# ztps --conf /var/ztps.conf

If the global configuration file is updated, the server must be restarted in order to pick up the new configuration.

[default]

Location of all ztps boostrap process data files
default=/var/lib/ztpserver
data_root=<PATH>

UID used in the /nodes structure (serialnum is not supported yet)
default=serialnum

18 Chapter 2. Features

https://docs.python.org/2/library/configparser.html

ZTPServer Documentation, Release 1.2.0

identifier=<serialnum | systemmac>

Server URL to-be-advertised to clients (via POST replies) during the bootstrap process
default=http://ztpserver:8080
server_url=<URL>

Enable local logging
default=True
logging=<True | False>

Enable console logging
default=True
console_logging=<True | False>

Globally disable topology validation in the bootstrap process
default=False
disable_topology_validation=<True | False>

[server]
Note: this section only applies to using the standalone server. If
running under a WSGI server, these values are ignored

Interface to which the server will bind to (0:0:0:0 will bind to
all available IPv4 addresses on the local machine)
default=0.0.0.0
interface=<IP addr>

TCP listening port
default=8080
port=<TCP port>

[files]
Path for the files directory (overriding data_root/files)
default=files
folder=<path>
default=data_root (from above)
path_prefix=<path>

[actions]
Path for the actions directory (overriding data_root/actions)
default=actions
folder=<path>
default=data_root (from above)
path_prefix=<path>

[bootstrap]
Path for the bootstrap directory (overriding data_root/bootstrap)
default=bootstrap
folder=<path>
default=data_root (from above)
path_prefix=<path>

Bootstrap filename
default=bootstrap
filename=<name>

[neighbordb]
Neighbordb filename (file located in data_root)

2.4. Configuration 19

ZTPServer Documentation, Release 1.2.0

default=neighbordb
filename=<name>

Note: Configuration values may be overridden by setting environment variables, if the configuration attribute supports
it. This is mainly used for testing and should not be used in production deployments.

Configuration values that support environment overrides use the environ keyword, as shown below:

runtime.add_attribute(StrAttr(
name=’data_root’,
default=’/usr/share/ztpserver’,
environ=’ZTPS_DEFAULT_DATAROOT’

))

In the above example, the data_root value is normally configured in the [default] section as data_root; however,
if the environment variable ZTPS_DEFAULT_DATAROOT is defined, it will take precedence.

2.4.3 Bootstrap configuration

[data_root]/bootstrap/ contains files that control the bootstrap process of a node.

• bootstrap is the base bootstrap script which is going to be served to all clients in order to control the bootstrap
process. Before serving the script to the clients, the server replaces any references to $SERVER with the value
of server_url in the global configuration file.

• bootstrap.conf is a configuration file which defines the local logging configuration on the nodes (during the
bootstrap process). The file is loaded on on-demand.

e.g.

logging:
-

destination: "ztps.ztps-test.com:514"
level: DEBUG

- destination: file:/tmp/ztps-log
level: DEBUG

- destination: ztps-server:1234
level: CRITICAL

- destination: 10.0.1.1:9000
level: CRITICAL

xmpp:
domain: im.ztps-test.com
username: bootstrap
password: eosplus
rooms:

- ztps
- ztps-room2

Note: In order for XMPP logging to work, a non-EOS user need to be connected to the room specified in boot-
strap.conf, before the ZTP process starts. The room has to be created (by the non-EOS user) before the bootstrap
client starts logging the ZTP process via XMPP.

20 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

2.4.4 Static provisioning - overview

A node can be statically configured on the server as follows:

• create a new directory under [data_root]/nodes, using the system unique_id as the name

• create/symlink a startup-config or definition in the newly-created folder

• if topology validation is enabled, also create/symlink a pattern file

2.4.5 Static provisioning - startup_config

startup-config provides a static startup-configuration for the node. If this file is present in a node’s folder,
when the node sends a GET request to /nodes/<unique_id>, the server will respond with a static definition that
includes:

• all the actions from the local definition file (see definition section below for more on this) which have the
always_execute attribute set to True

• a replace_config action which will install the configuration file on the switch (see actions section below for
more on this). This action will be placed last in the definition.

2.4.6 Static provisioning - definition

The definition file contains the set of actions which are going to be performed during the bootstrap process for a node.
The definition file can be either: manually created OR auto-generated by the server when the node matches one of
the patterns in neighbordb (in this case the definition file is generated based on the definition file associated with the
matching pattern in neighbordb).

name: <system name>

actions:
-
action: <action name>

attributes: # attributes at action scope
always_execute: True # optional, default False
<key>: <value>
<key>: <value>

onstart: <msg> # message to log before action is executed
onsuccess: <msg> # message to log if action execution succeeds
onfailure: <msg> # message to log if action execution fails

...

attributes: # attributes at global scope
<key>: <value>
<key>: <value>
<key>: <value>

2.4.7 Static provisioning - attributes

Attributes are either key/value pairs, key/dictionary pairs, key/list pairs or key/reference pairs. They are all sent to the
client in order to be passed in as arguments to actions.

Here are a few examples:

2.4. Configuration 21

ZTPServer Documentation, Release 1.2.0

• key/value:

attributes:
my_attribute : my_value

• key/dictionary

attributes:
my_dict_attribute:

key1: value1
key2: value2

• key/list:

attributes:
- my_value1
- my_value2
- my_valueN

• key/reference:

attributes:
my_attribute : $my_other_attribute

key/reference attributes are identified by the fact that the value starts with the ‘$’ sign, followed by the name of
another attribute. They are evaluated before being sent to the client.

Example:

attributes:
my_other_attribute: dummy
my_attribute : $my_other_attribute

will be evaluated to:

attributes:
my_other_attribute: dummy
my_attribute : dummy

If a reference points to a non-existing attribute, then the variable substitution will result in a value of None.

Note: Only one level of indirection is allowed - if multiple levels of indirection are used, then the data sent to the
client will contain unevaluated key/reference pairs in the attributes list (which might lead to failures or unexpected
results in the client).

The values of the attributes can be either strings, numbers, lists, dictionaries, or references to other attributes or
functions.

The supported functions are:

• allocate(resource_pool) - allocatea an available resource from a resource pool; the allocation is perform on the
server side and the result of the allocation is passed to the client via the definition

Note: Functions can only be used with strings as arguments, currently. See section on add_config action for examples.

Attributes can be defined in three places:

• in the definition, at action scope

• in the definition, at global scope

22 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

• in the node’s attributes file (see below)

attributes is a file which can be used in order to store attributes associated with the node’s definition. This is
especially useful whenever multiple nodes share the same definition - in that case, instead of having to edit each
node’s definition in order to add the attributes (at the global or action scope), all nodes can share the same definition
(which might be symlinked to their individual node folder) and the user only has to create the attributes file for each
node. The attributes file should be a valid key/value YAML file.

<key>: <value>
<key>: <value>
...

For key/value, key/list and and key/reference attributes, in case of conflicts between the three scopes, the following
order of precidence rules are applied to determine the final value to send to the client:

1. action scope in the definition takes precedence

2. attributes file comes next

3. global scope in the definition comes last

For key/dict attributes, in case of conflicts between the scopes, the dictionaries are merged. In the event of dictionary
key conflicts, the same precidence rules from above apply.

2.4.8 Static provisioning - pattern

The‘‘pattern‘‘ file a way to validate the node’s topology during the bootstrap process (if topology validation is enabled).
The pattern file can be either:

• manually created

• auto-generated by the server, when the node matches one of the patterns in neighbordb (the pattern that is
matched in neighbordb is, then, written to this file and used for topology validation in subsequent re-runs of
the bootstrap process)

The format of a pattern is very similar to the format of neighordb (see neighbordb section below):

variables:
<variable_name>: <function>

...

name: <single line description of pattern> # optional
interfaces:

- <port_name>:<system_name>:<neighbor_port_name>
- <port_name>:

device: <system_name>
port: <neighbor_port_name>

...

If the pattern file is missing when the node makes a GET request for its definition, the server will log a message and
return either:

• 400 (BAD_REQUEST) if topology validation is enabled

• 200 (OK) if topology validation is disabled

If topology validation is enabled globally, the following patterns can be used in order to disable it for a particular node:

• match any node which has at least one LLDP-capable neighbor:

2.4. Configuration 23

ZTPServer Documentation, Release 1.2.0

name: <pattern name>
interfaces:

- any: any:any

- match **any** node which has no LLDP-capable neighbors:

name: <pattern name>
interfaces:

- none: none:none

2.4.9 Static provisioning - log

The .node file contains a cached copy of the node’s details that were received during the POST request the node
makes to /nodes (URI). This cache is used to validate the node’s neighbors against the pattern file, if topology
validation is enabled (during the GET request the node makes in order to retrieve its definition).

The .node is created automatically by the server and should not be edited manually.

Example .node file:

{"neighbors": {"Management1": [{"device": "ztps.ztps-test.com",
"port": "0050.569b.9ba5"}

],
"Ethernet2": [{"device": "veos-dc1-pod1-spine1",

"port": "0050.569a.9321"}
]

},
"model": "vEOS",
"version": "4.13.7M",
"systemmac": "005056b863ac"

}

2.4.10 Dynamic provisioning - overview

A node can be dynamically provisioned by creating a matching neighbordb ([data_root]/neighbordb)
entry which maps to a definition. The entry can potentially match multiple nodes. The associated definition should be
created in [data_root]/definitions/.

2.4.11 Dynamic provisioning - neighbordb

The neighbordb YAML file defines mappings between patterns and definitions. If a node is not already configured
via a static entry, then the node’s topology details are attempted to be matched against the patterns in neighbordb.
If a match is successful, then a node definition will be automatically generated for the node (based on the mapping in
neighbordb).

There are 2 types of patterns supported in neighbordb: node-specific (containing the node attribute, which refers to
the unique_id of the node) and global patterns.

Rules:

• if multiple node-specific entries reference the same unique_id, only the first will be in effect - all others
will be ignored

• if both the node and interfaces attributes are specified and a node’s unique_id is a match, but the topology
information is not, then the overall match will fail and the global patterns will not be considered

24 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

• if there is no matching node-specific pattern for a node’s unique_id, then the server will attempt to match
the node against the global patterns (in the order they are specified in neighbordb)

• if a node-specific node matches, the server will automatically generate an open pattern in the node’s folder.
This pattern will match any device with at least one LLDP-capable neighbor.

variables:
variable_name: function

...
patterns:

- name: <single line description of pattern>
definition: <defintion_url>
node: <unique_id>
variables:

<variable_name>: <function>
interfaces:

- <port_name>: <system_name>:<neighbor_port_name>
- <port_name>:

device: <system_name>
port: <neighbor_port_name>

...

Note: Mandatory attributes: name, definition, and either node, interfaces or both. Optional attributes: variables

variables

The variables can be used to match the remote device and/or port name (<system_name>,
<neighbor_port_name> above) for a neighbor. The supported values are:

string same as exact(string) from below

exact (pattern) defines a pattern that must be matched exactly (Note: this is the default function if another function
is not specified)

regex (pattern) defines a regex pattern to match the node name against

includes (string) defines a string that must be present in system/port name

excludes (string) defines a string that must not be present in system/port name

unique_id

Serial number or MAC address, depending on the global ‘identifier’ attribute in ztpserver.conf.

port_name

Local interface name - supported values:

• Any interface

– any

• No interface

– none

• Explicit interface

– Ethernet1

2.4. Configuration 25

ZTPServer Documentation, Release 1.2.0

– Ethernet2/4

– Management1

• Interface list/range

– Ethernet1-2

– Ethernet1,3

– Ethernet1-2,3/4

– Ethernet1-2,4

– Ethernet1-2,4,6

– Ethernet1-2,4,6,8-9

– Ethernet4,6,8-9

– Ethernet10-20

– Ethernet1/3-2/4 *

– Ethernet3-$ *

– Ethernet1/10-$ *

• All Interfaces on a Module

– Ethernet1/$ *

Note: * Planned for future releases.

system_name:neighbor_port_name

Remote system and interface name - supported values (STRING = any string which does not contain any white spaces):

• any: interface is connected

• none: interface is NOT connected

• <STRING>:<STRING>: interface is connected to specific device/interface

• <STRING> (Note: if only the device is configured, then ‘any’ is implied for the interface. This is equal to
<DEVICE>:any): interface is connected to device

• <DEVICE>:any: interface is connected to device

• <DEVICE>:none: interface is NOT connected to device (might be connected or not to some other device)

• $<VARIABLE>:<STRING>: interface is connected to specific device/interface

• <STRING>:<$VARIABLE>: interface is connected to specific device/interface

• $<VARIABLE>:<$VARIABLE>: interface is connected to specific device/interface

• $<VARIABLE> (‘any’ is implied for the interface. This is equal to $<VARIABLE>:any): interface is con-
nected to device

• $<VARIABLE>:any: interface is connected to device

• $<VARIABLE>:none: interface is NOT connected to device (might be connected or not to some other device)

26 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

port_name: system_name:neighbor_port_name

Negative constraints

1. any: DEVICE:none: no port is connected to DEVICE

2. none: DEVICE:any: same as above

3. none: DEVICE:none: same as above

4. none: any:PORT: no device is connected to PORT on any device

5. none: DEVICE:PORT: no device is connected to DEVICE:PORT

6. INTERFACES: any:none: interfaces not connected

7. INTERFACES: none:any: same as above

8. INTERFACES: none:none: same as above

9. INTERFACES: none:PORT: interfaces not connected to PORT on any device

10. INTERFACES: DEVICE:none: interfaces not connected to DEVICE

11. any: any:none: bogus, will prevent pattern from matching anything

12. any: none:none: bogus, will prevent pattern from matching anything

13. any: none:any: bogus, will prevent pattern from matching anything

14. any: none:PORT: bogus, will prevent pattern from matching anything

15. none: any:any: bogus, will prevent pattern from matching anything

16. none: any:none: bogus, will prevent pattern from matching anything

17. none: none:any: bogus, will prevent pattern from matching anything

18. none: none:none: bogus, will prevent pattern from matching anything

19. none: none:PORT: bogus, will prevent pattern from matching anything

Positive constraints

1. any: any:any: matches anything

2. any: any:PORT: matches any interface connected to any device’s PORT

3. any: DEVICE:any: matches any interface connected to DEVICE

4. any: DEVICE:PORT: matches any interface connected to DEVICE:PORT

5. INTERFACES: any:any: matches if local interfaces is one of INTERFACES

6. INTERFACES: any:PORT: matches if one of INTERFACES is connected to any device’s PORT

7. INTERFACES: DEVICE:any: matches if one of INTERFACES is connected to DEVICE

8. INTERFACES: DEVICE:PORT: matches if one of INTERFACES is connected to DEVICE:PORT

2.4.12 Definitions

[data_root]/definitions/ contains a set of shared definition files which can be associated with patterns
in neighbordb (see the Dynamic provisioning - neighbordb section below) or added to/symlink-ed from nodes’
folders.

See Static provisioning - definition for more.

2.4. Configuration 27

ZTPServer Documentation, Release 1.2.0

2.4.13 Actions

[data_root]/actions/ contains the set of all actions available for use in definitions.

Action Description Required Attributes
add_config Adds a block of configuration to the final

startup-config file
url

copy_file Copies a file from the server to the destination node src_url, dst_url, overwrite, mode
install_cli_pluginInstalls a new EOS CLI plugin and configures rc.eos url
install_extensionInstalls a new EOS extension extension_url, autoload, force
install_imageValidates and installs a specific version of EOS url, version
replace_configSends an entire startup-config to the node (overrides

(overrides add_config)
url

send_email Sends an email to a set of recipients routed through a
relay host. Can include file attachments

smarthost, sender, receivers, subject,
body, attachments, commands

Additional details on each action are available in the Actions module docs.

e.g.

Assume that we have a block of configuration that adds a list of NTP servers to the startup configuration. The action
would be constructed as such:

actions:
- name: configure NTP

action: add_config
attributes:

url: /files/templates/ntp.template

The above action would reference the ntp.template file which would contain configuration commands to config-
ure NTP. The template file could look like the following:

ntp server 0.north-america.pool.ntp.org
ntp server 1.north-america.pool.ntp.org
ntp server 2.north-america.pool.ntp.org
ntp server 3.north-america.pool.ntp.org

When this action is called, the configuration snippet above will be appended to the startup-config file.

The configuration templates can also contains variables, which are automatically substituted during the action’s exe-
cution. A variable is marked in the template via the ‘$’ symbol.

e.g. Let’s assume a need for a more generalized template that only needs node specific values changed (such as a
hostname and management IP address). In this case, we’ll build an action that allows for variable substitution as
follows.

actions:
- name: configure system

action: add_config
attributes:

url: /files/templates/system.template
variables:

hostname: veos01
ipaddress: 192.168.1.16/24

The corresponding template file system.template will provide the configuration block:

hostname $hostname
!
interface Management1

28 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

description OOB interface
ip address $ipaddress
no shutdown

This will result in the following configuration being added to the startup-config:

hostname veos01
!
interface Management1

description OOB interface
ip address 192.168.1.16/24
no shutdown

Note that in each of the examples, above, the template files are just standard EOS configuration blocks.

2.4.14 Resource pools

[data_root]/resources/ contains global resource pools from which attributes in definitions can be allocated
via the allocate(...) function.

The resource pools provide a way to dynamically allocate a resource to a node when the node definition is created.
The resource pools are key/value YAML files that contain a set of resources to be allocated to a node (whenever the
allocate(...) function is used in the definition).

<value1>: <"null"|node_identifier>
<value2>: <"null"|node_identifier>

In the example below, a resource pool contains a series of 8 IP addresses to be allocated. Entries which are not yet
allocated to a node are marked using the null descriptor.

192.168.1.1/24: null
192.168.1.2/24: null
192.168.1.3/24: null
192.168.1.4/24: null
192.168.1.5/24: null
192.168.1.6/24: null
192.168.1.7/24: null
192.168.1.8/24: null

When a resource is allocated to a node’s definition, the first available null value will be replaced by the node’s
unique_id. Here is an example:

192.168.1.1/24: 001c731a2b3c
192.168.1.2/24: null
192.168.1.3/24: null
192.168.1.4/24: null
192.168.1.5/24: null
192.168.1.6/24: null
192.168.1.7/24: null
192.168.1.8/24: null

On subsequent attempts to allocate the resource to the same node, ZTPS will first check to see whether the node has
already been allocated a resource from the pool. If it has, it will reuse the resource instead of allocating a new one.

In order to free a resource from a pool, simply turn the value associated to it back to null, by editing the resource
file.

2.4. Configuration 29

ZTPServer Documentation, Release 1.2.0

2.4.15 Other files

[data_root]/files/ contains the files that actions might request from the server. For example,
[data_root]/files/images/ could contain all EOS SWI files.

2.5 Examples

• Global configuration file
• Dynamic neighbordb or pattern file
• Static neighbordb and /node/<unique-id>/pattern file
• Sample dynamic definition file
• Sample templates
• Sample resources
• Neighbordb pattern examples

– Example #1
– Example #2
– Example #3
– Example #4

• More examples

2.5.1 Global configuration file

[default]
Location of all ztps boostrap process data files
data_root = /usr/share/ztpserver

UID used in the /nodes structure (serialnumber or systemmac)
identifier = serialnumber

Server URL to-be-advertised to clients (via POST replies) during the bootstrap process
server_url = http://172.16.130.10:8080

Enable local logging
logging = True

Enable console logging
console_logging = True

Globally disable topology validation in the bootstrap process
disable_topology_validation = False

[server]
Note: this section only applies to using the standalone server. If
running under a WSGI server, these values are ignored

Interface to which the server will bind to (0:0:0:0 will bind to
all available IPv4 addresses on the local machine)
interface = 172.16.130.10

TCP listening port
port = 8080

30 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

[files]
Path for the files directory (overriding data_root/files)
folder = files
path_prefix = /usr/share/ztpserver

[actions]
Path for the actions directory (overriding data_root/actions)
folder = actions
path_prefix = /usr/share/ztpserver

[bootstrap]
Path for the bootstrap directory (overriding data_root/bootstrap)
folder = bootstrap
path_prefix = /usr/share/ztpserver

Bootstrap filename
filename = bootstrap

[neighbordb]

Neighbordb filename (file located in data_root)
filename = neighbordb

2.5.2 Dynamic neighbordb or pattern file

patterns:
#dynamic sample

- name: dynamic_sample
definition: tor1
interfaces:

- Ethernet1: spine1:Ethernet1
- Ethernet2: spine2:Ethernet1
- any: ztpserver:any

- name: dynamic_sample2
definition: tor2
interfaces:

- Ethernet1: spine1:Ethernet2
- Ethernet2: spine2:Ethernet2
- any: ztpserver:any

2.5.3 Static neighbordb and /node/<unique-id>/pattern file

patterns:
#static sample

- name: static_node
node: 000c29f3a39g
interfaces:

- any: any:any

2.5. Examples 31

ZTPServer Documentation, Release 1.2.0

2.5.4 Sample dynamic definition file

actions:

-
action: install_image
always_execute: true
attributes:

url: files/images/vEOS.swi
version: 4.13.5F

name: "validate image"
-
action: add_config
attributes:

url: files/templates/ma1.template
variables:

ipaddress: allocate(’mgmt_subnet’)
name: "configure ma1"

-
action: add_config
attributes:

url: files/templates/system.template
variables:

hostname: allocate(’tor_hostnames’)
name: "configure global system"

-
action: add_config
attributes:

url: files/templates/login.template
name: "configure auth"

-
action: add_config
attributes:

url: files/templates/ztpprep.template
name: "configure ztpprep alias"

-
action: add_config
attributes:

url: files/templates/snmp.template
variables: $variables

name: "configure snmpserver"
-
action: add_config
attributes:

url: files/templates/configpush.template
variables: $variables

name: "configure config push to server"
-
action: copy_file
always_execute: true
attributes:

dst_url: /mnt/flash/
mode: 777
overwrite: if-missing
src_url: files/automate/ztpprep

name: "automate reload"
attributes:

variables:
ztpserver: 172.16.130.10

32 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

name: tora

2.5.5 Sample templates

#login.template
#::::::::::::::
username admin priv 15 secret admin

#ma1.template
#::::::::::::::
interface Management1

ip address $ipaddress
no shutdown

#hostname.template
#::::::::::::::
hostname $hostname

2.5.6 Sample resources

#mgmt_subnet
#::::::::::::::
192.168.100.210/24: null
192.168.100.211/24: null
192.168.100.212/24: null
192.168.100.213/24: null
192.168.100.214/24: null

#tor_hostnames
#::::::::::::::
veos-dc1-pod1-tor1: null
veos-dc1-pod1-tor2: null
veos-dc1-pod1-tor3: null
veos-dc1-pod1-tor4: null
veos-dc1-pod1-tor5: null

2.5.7 Neighbordb pattern examples

Example #1

- name: standard leaf definition

definition: leaf_template
node: ABC12345678
interfaces:
- Ethernet49: pod1-spine1:Ethernet1/1
- Ethernet50:

device: pod1-spine2
port: Ethernet1/1

In example #1, the topology map would only apply to a node with system ID equal to ABC12345678. The following
interface map rules apply:

• Interface Ethernet49 must be connected to node pod1-spine1 on port Ethernet1/1

2.5. Examples 33

ZTPServer Documentation, Release 1.2.0

• Interface Ethernet50 must be connected to node pod1-spine2 on port Ethernet1/1

Example #2

- name: standard leaf definition

definition: leaf_template
node: 001c73aabbcc
interfaces:
- any: regex(’pod\d+-spine\d+’):Ethernet1/$
- any:

device: regex(’pod\d+-spine1’)
port: Ethernet2/3

In this example, the topology map would only apply to the node with system ID equal to 001c73aabbcc. The following
interface map rules apply:

• At least one interface interface must be connected to node that matches the regular expression ‘pod+-spine+’ on
port Ethernet1/$ (any port on module 1)

• At least one interface and not the interface which matched in the previous step must be connected to a node that
matches the regular expression ‘pod+-spine1’ on port Ethernet2/3

Example #3

- name: standard leaf definition

definition: dc-1/pod-1/leaf_template
variables:
- not_spine: excludes(’spine’)
- any_spine: regex(’spine\d+’)
- any_pod: includes(’pod’)
- any_pod_spine: any_spine and any_pod*

interfaces:
- Ethernet1: $any_spine:Ethernet1/$
- Ethernet2: $pod1-spine2:any
- any: excludes(’spine1’):Ethernet49
- any: excludes(’spine2’):Ethernet49
- Ethernet49:

device: $not_spine
port: Ethernet49

- Ethernet50:
device: excludes(’spine’)
port: Ethernet50

Note: * In a future release.

This example pattern could apply to any node that matches the interface map. In includes the use of variables for
cleaner implementation and pattern re-use.

• Variable not_spine matches any node name where ‘spine’ doesn’t appear in the string

• Variable any_spine matches any node name where the regular expression ‘spine+’ matches the name

• Variable any_pod matches any node name where that includes the name ‘pod’ in it

• Variable any_pod_spine combines variables any_spine and any_pod into a complex variable that includes
any name that matches the regular express ‘spine+’ and the name includes ‘pod’ (not yet supported)

34 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

• Interface Ethernet1 must be connected to a node that matches the any_spine pattern and is connected on Ether-
net1/$ (any port on module 1)

• Interface Ethernet2 must be connected to node ‘pod1-spine2’ on any Ethernet port

• Interface any must be connected to any node that doesn’t have ‘spine1’ in the name and is connected on Ether-
net49

• Interface any must be connected to any node that doesn’t have ‘spine2’ in the name and wasn’t already used and
is connected to Ethernet49

• Interface Ethernet49 matches if it is connected to any node that matches the not_spine pattern and is connected
on port 49

• Interface Ethernet50 matches if the node is connected to port Ethernet50 on any node whose name does not
contain ‘spine’

Example #4

- name: sample mlag definition

definition: mlag_leaf_template
variables:
any_spine: includes(’spine’)
not_spine: excludes(’spine’)

interfaces:
- Ethernet1: $any_spine:Ethernet1/$
- Ethernet2: $any_spine:any

- Ethernet3: none
- Ethernet4: any
- Ethernet5:

device: includes(’oob’)
port: any

- Ethernet49: $not_spine:Ethernet49
- Ethernet50: $not_spine:Ethernet50

This is a similar example to #3 that demonstrates how an MLAG pattern might work.

• Variable any_spine defines a pattern that includes the word ‘spine’ in the name

• Variable not_spine defines a pattern that matches the inverse of any_spine

• Interface Ethernet1 matches if it is connected to any_spine on port Ethernet1/$ (any port on module 1)

• Interface Ethernet2 matches if it is connected to any_spine on any port

• Interface 3 matches so long as there is nothing attached to it

• Interface 4 matches so long as something is attached to it

• Interface 5 matches if the node contains ‘oob’ in the name and is connected on any port

• Interface49 matches if it is connected to any device that doesn’t have ‘spine’ in the name and is connected on
Ethernet50

• Interface50 matches if it is connected to any device that doesn’t have ‘spine’ in the name and is connected on
port Ethernet50

2.5.8 More examples

Additional ZTPServer file examples are available on GitHub at the ZTPServer Demo.

2.5. Examples 35

https://github.com/arista-eosplus/ztpserver-demo

ZTPServer Documentation, Release 1.2.0

2.6 Tips and tricks

• How do I update my local copy of ZTPServer from GitHub?
– Automatically
– Manually

• My server keeps failing to load my resource files. What’s going on?
• How do I disable / enable ZTP mode on a switch
• How can I test ZTPServer without having to reboot the switch every time?
• What is the recommended test environment for ZTPServer?
• How do I override the default system-mac in vEOS?
• How do I override the default serial number or system-mac in vEOS?

2.6.1 How do I update my local copy of ZTPServer from GitHub?

Automatically

Go to the ZTPServer directory where you previously cloned the GitHub repository and execute:
./utils/refresh_ztps [-b <branch>] [-f <path>]

• <branch> can be any branch name in the Git repo. Typically this will be one of:

– “master” - for the latest release version

– “vX.Y.Z-rc” - for beta testing the next X.Y.Z release-candidate

– “develop” (DEFAULT) - for the latest bleeding-edge development branch

• <path> is the base directory of the ztpserver installation.

– /usr/share/ztpserver (DEFAULT)

Manually

Remove the existing ZTPServer files:

rm -rf /usr/share/ztpserver/actions/*
rm -rf /usr/share/ztpserver/bootstrap/*
rm -rf /usr/lib/python2.7/site-packages/ztpserver*
rm -rf /bin/ztps*
rm -rf /home/ztpuser/ztpserver/ztpserver.egg-info/
rm -rf /home/ztpuser/ztpserver/build/*

Go to the ZTPServer directory where you previously cloned the GitHub repository, update it, then build and install the
server:

bash-3.2$ git pull
bash-3.2$ python setup.py build
bash-3.2$ python setup.py install

2.6.2 My server keeps failing to load my resource files. What’s going on?

Did you know?

36 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

a:b is INVALID YAML
a: b is VALID YAML syntax

Check out YAML syntax checker for more.

2.6.3 How do I disable / enable ZTP mode on a switch

By default, any switch that does not have a startup-config will enter ZTP mode to attempt to retrieve one. This
feature was introduced in EOS 3.7 for fixed devices and EOS 4.10 for modular ones. In ZTP mode, the switch sends
out DHCP requests on all interfaces and will not forward traffic until it reboots with a config.

To cancel ZTP mode, login as admin and type zerotouch cancel. This will trigger an immediate reload of the
switch, after which the switch will be ready to configure manually. At this point, if you ever erase the startup-config
and reload, the switch will edn up ZTP mode again.

To completely disable ZTP mode, login as admin and type zerotouch disable. This will trigger an immediate
reload of the switch after which the switch will will be ready to configure manually. If you wish to re-enable ZTP, go
to configure mode and run zerotouch enable. The next time you erase the startup-config and reload the switch,
the switch will end up ZTP mode again.

Note: vEOS instances come with a minimal startup-config so they do not boot in to ZTP mode by default. In order
to use vEOS to test ZTP, enter erase startup-config and reload.

2.6.4 How can I test ZTPServer without having to reboot the switch every time?

From a bash shell on the switch:

retrieve the bootstrap file from server
wget http://<ZTP_SERVER>:<PORT>/bootstrap
make file executable
sudo chmod 777 bootstrap
execute file
sudo ./bootstrap

2.6.5 What is the recommended test environment for ZTPServer?

The best way to learn about and test a ZTPServer environment is to build the server and virtual (vEOS) nodes with
Packer. See https://github.com/arista-eosplus/packer-ztpserver for directions.

If you setup your own environment, the following recommendations should assist greatly in visualizing the workflow
and troubleshooting any issues which may arise. The development team strongly encourages these steps as Best Prac-
tices for testing your environment, and, most of these recommendations are also Best Practices for a full deployment.

• During testing, only - run the standalone server in debug mode: ztps --debug in a buffered shell. NOTE: do
NOT use this standalone server in production, however, except in the smallest environments (Approx 10 nodes
or less, consecutively).

• Do not attempt any detailed debugging from a virtual or serial console. Due to the quantity of information
and frequent lack of copy/paste access, this if often painful. Both suggested logging methods, below, can be
configured in the Bootstrap configuration.

– (BEST) Setup XMPP logging. There are many XMPP services available, including ejabberd, and even
more clients, such as Adium. This will give you a single pane view of what is happening on all of your
test switches. Our demo includes ejabberd with the following configuration:

2.6. Tips and tricks 37

http://yamllint.com/
https://github.com/arista-eosplus/packer-ztpserver
https://www.ejabberd.im/
https://adium.im/

ZTPServer Documentation, Release 1.2.0

* Server: im.ztps-test.com (or your ZTPServer IP)

* XMPP admin user: ztpsadmin@im.ztps-test.com, passwd eosplus

– (Second) In place of XMPP, splecify a central syslog server in the bootstrap config.

2.6.6 How do I override the default system-mac in vEOS?

Add the desired MAC address to the first line of the file /mnt/flash/system_mac_address, then reboot (Feature added
in 3.13.0F)

[admin@localhost ~]$ echo 1122.3344.5566 > /mnt/flash/system_mac_address

2.6.7 How do I override the default serial number or system-mac in vEOS?

As of vEOS 4.14.0, the serial number and system mac address can be configured with a file in /mnt/flash/veos-config.
After modifying SERIALNUMBER or SYSTEMMACADDR, a reboot is required for the changes to take effect.

SERIALNUMBER=ABC12345678
SYSTEMMACADDR=1122.3344.5566

2.7 Internals

2.7.1 Implementation Details

• Client-side implementation details
– Action attributes
– Bootstrap URLs

Client-side implementation details

Action attributes

The bootstrap script will pass in as argument to the main method of each action a special object called ‘attributes’. The
only API the action needs to be aware for this object is the ‘get’ method, which will return the value of an attribute, as
configured on the server:

• the value can be local to a particular action or global

• if an attribute is defined at both the local and global scopes, the local value takes priority

• if an attribute is not defined at either the local or global level, then the ‘get’ method will return None

e.g. (action code)

def main(attributes):
print attributes.get(‘software_image’)

Besides the values coming from the server, a couple of special entries* (always upper case) are also contained in the
attributes object:

• ‘NODE’: a node object for making eAPI calls to localhost. See the Bootstrap Client documentation.

38 Chapter 2. Features

mailto:ztpsadmin@im.ztps-test.com

ZTPServer Documentation, Release 1.2.0

e.g. (action_code)

def main(attributes):
print attributes.get(‘NODE’).api_enable_cmds([‘show version’])

Bootstrap URLs

1. DHCP response contains the URL pointing to the bootstrap script on the server

2. The location of the server is hardcoded in the bootstrap script, using the SERVER global variable. The boot-
strap script uses this base address in order to generate the URL to use in order to GET the logging details:
BASE_URL/config e.g.

SERVER = ‘http://my-bootstrap-server:80’ # Note that the port and the transport mechanism
is included in the URL

3. The bootstrap script uses the SERVER base address in order to compute the URL to use in order to POST the
node’s information: BASE_URL/config

4. The bootstrap script uses the ‘location’ header in the POST reply as the URL to use in order to request the
definition

5. Actions and resources URLs& are computed by using the base address in the bootstrap script:
BASE_URL/actions/, BASE_URL/files/

2.7.2 Client - Server API

• URL Endpoints
– GET bootstrap script
– GET logging configuration
– POST node details
– GET node definition
– GET action
– GET resource

URL Endpoints

HTTP Method URI
GET /bootstrap/config
GET /bootstrap
POST /nodes
PUT /nodes/{id}
GET /nodes/{id}
GET /actions/{name}
GET /files/{filepath}

GET bootstrap script

GET /bootstrap
Returns the default bootstrap script

2.7. Internals 39

ZTPServer Documentation, Release 1.2.0

Response

Status: 200 OK
Content-Type: text/x-python

Note: For every request, the bootstrap controller on the ZTPServer will attempt to perform the following string
replacement in the bootstrap script): “$SERVER“ —> the value of the “server_url” variable in the server’s global
configuration file. This string replacement will point the bootstrap client back to the server in order to enable the
client to make additional requests for further resources on the server.

• if the server_url variable is missing from the server’s global configuration file, ‘http://ztpserver:8080‘ is
used by default

• if the $SERVER string is missing from the bootstrap script, the controller will log a warning message and
continue

GET logging configuration

GET /bootstrap/config
Returns the logging configuration from the server.

Request

GET /bootstrap/config HTTP/1.1
Host:
Accept:
Content-Type: text/html

Response

Status: 200 OK
Content-Type: application/json
{

“logging”*: [{
“destination”: “file:/<PATH>” | “<HOSTNAME OR IP>:<PORT>”, //localhost enabled

//by default
“level”*: <DEBUG | CRITICAL | ...>,

}]
},

“xmpp”*:{
“server”: <IP or HOSTNAME>,
“port”: <PORT>, // Optional, default 5222
“username”*: <USERNAME>,
“domain”*: <DOMAIN>,
“password”*: <PASSWORD>,
“nickname”: <NICKNAME>, // Optional, default ‘username’
“rooms”*: [<ROOM>, ...]
}

}
}

Note: * Items are mandatory (even if value is empty list/dict)

POST node details

Send node information to the server in order to check whether it can be provisioned.

40 Chapter 2. Features

http://ztpserver:8080

ZTPServer Documentation, Release 1.2.0

POST /nodes
Request

Content-Type: application/json
{

“model”*: <MODEL_NAME>,
“serialnumber”*: <SERIAL_NUMBER>,
“systemmac”*: <SYSTEM_MAC>,
“version”*: <INTERNAL_VERSION>,

“neighbors”*: {
<INTERFACE_NAME(LOCAL)>: [{

’device’: <DEVICE_NAME>,
’remote_interface’: <INTERFACE_NAME(REMOTE)>

}]
},

}

Note: * Items are mandatory (even if value is empty list/dict)

Response

Status: 201 Created
Content-Type: text/html
Location: <url>

Status: 409 Conflict
Content-Type: text/html
Location: <url>

Status: 400 Bad Request
Content-Type: text/html

Status Codes

• 201 Created – Created

• 409 Conflict – Conflict

• 400 Bad Request – Bad Request

GET node definition

Request definition from the server.

GET /nodes/(ID)
Request

GET /nodes/{ID} HTTP/1.1
Host:
Accept: applicatino/json
Content-Type: text/html

Response

Status: 200 OK
Content-Type: application/json
{

“name”*: <DEFINITION_NAME>

2.7. Internals 41

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

ZTPServer Documentation, Release 1.2.0

“actions”*: [{ “action”*: <NAME>*,
“description”: <DESCRIPTION>,
“onstart”: <MESSAGE>,
“onsuccess”: <MESSAGE>,
“onfailure”: <MESSAGE>,
“always_execute”: [True, False],
“attributes”: { <KEY>: <VALUE>,

<KEY>: { <KEY> : <VALUE>},
<KEY>: [<VALUE>, <VALUE>]
}

},...]
}

Note: * Items are mandatory (even if value is empty list/dict)

Status Codes

• 400 Bad Request – Bad Request

• 404 Not Found – Not Found

GET action

GET /actions/(NAME)
Request action from the server.

Request

Content-Type: text/html

Response

Content-Type: text/x-python

Status Codes

• 200 OK – OK

• 400 Bad Request – Bad Request

• 404 Not Found – Not Found

Status: 200 OK Content-Type: text/plain <PYTHON SCRIPT>

Status: 200 Bad request Content-Type: text/x-python

GET resource

GET /files/(RESOURCE_PATH)
Request action from the server.

Request

Content-Type: text/html

Response

42 Chapter 2. Features

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

ZTPServer Documentation, Release 1.2.0

Status: 200 OK
Content-Type: text/plain
<resource>

Status Codes

• 200 OK – OK

• 404 Not Found – Not Found

2.7.3 Modules

Bootstrap Client

class Node(server)

Node object which can be used by actions via: attributes.get(‘NODE’)

client
jsonrpclib.Server

jsonrpclib connect to Command API engine

api_config_cmds(cmds)
Run CLI commands via Command API, starting from config mode.

Commands are ran in order.

Parameters cmds (list) – List of CLI commands.

Returns List of Command API results corresponding to the input commands.

Return type list

api_enable_cmds(cmds, text_format=False)
Run CLI commands via Command API, starting from enable mode.

Commands are ran in order.

Parameters

• cmds (list) – List of CLI commands.

• text_format (bool, optional) – If true, Command API request will run in text mode (in-
stead of JSON).

Returns List of Command API results corresponding to the input commands.

Return type list

append_rc_eos_lines(lines)
Add lines to rc.eos.

Parameters lines (list) – List of bash commands

append_startup_config_lines(lines)
Add lines to startup-config.

Parameters lines (list) – List of CLI commands

details()
Get details.

2.7. Internals 43

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

ZTPServer Documentation, Release 1.2.0

Returns

System details

Format:

{’model’: <MODEL>,
’version’: <EOS_VERSION>,
’systemmac’: <SYSTEM_MAC>,
’serialnumber’: <SERIAL_NUMBER>,
’neighbors’: <NEIGHBORS> # see neighbors()

}

Return type dict

flash()
Get flash path.

Returns flash path

Return type string

has_startup_config()
Check whether startup-config is configured or not.

Returns True is startup-config is configured; false otherwise.

Return type bool

log_msg(msg, error=False)
Log message via configured syslog/XMPP.

Parameters

• msg (string) – Message

• error (bool, optional) – True if msg is an error; false otherwise.

neighbors()
Get neighbors.

Returns

LLDP neighbor

Format:

{’neighbors’: {<LOCAL_PORT>:
[{’device’: <REMOTE_DEVICE>,
’port’: <REMOTE_PORT>}, ...],

...}}

Return type dict

rc_eos()
Get rc.eos path.

Returns rc.eos path

Return type string

retrieve_url(url, path)
Download resource from server.

44 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

If ‘path’ is somewhere on flash and ‘url’ points back to SERVER, then the client will request the metadata
for the resource from the server (in order to check whether there is enogh disk space available). If ‘url’
points to a different server, then the ‘content-length’ header will be used for the disk space checks.

Raises ZtpError – resource cannot be retrieved: - metadata cannot be retrieved from server
OR - metadata is inconsistent with request OR - disk space on flash is insufficient OR - file
cannot be written to disk

Returns startup-config path

Return type string

classmethod server_address()
Get ZTP Server URL.

Returns ZTP Server URL.

Return type string

startup_config()
Get startup-config path.

Returns startup-config path

Return type string

system()
Get system information.

Returns

System information

Format:

{’model’: <MODEL>,
’version’: <EOS_VERSION>,
’systemmac’: <SYSTEM_MAC>,
’serialnumber’: <SERIAL_NUMBER>}

Return type dict

Actions

• add_config
• copy_file
• install_cli_plugin
• install_extension
• install_image
• replace_config
• send_email

add_config

main(attributes)
Adds startup-config section.

Appends config section to startup config based on the value of the ‘url’ attribute.

2.7. Internals 45

ZTPServer Documentation, Release 1.2.0

This action is dual-supervisor compatible.

Accepts: A list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read attribute values

Parameters

• url – path to config snippet/template

• substitution_mode – loose|strict Default: loose

• variables – A list of variable: value substitutions

• Special_attributes – node: attributes.get(‘NODE’) API: see documentation

Example

-
action: add_config
attributes:

url: files/templates/ma1.template
variables:

ipaddress: allocate(’mgmt_subnet’)
name: "configure ma1"
onstart: "Starting to configure ma1"
onsuccess: "SUCCESS: ma1 configure"
onfailure: "FAIL: IM provisioning@example.com for help"

copy_file

main(attributes)
Copies file to the switch.

Copies file based on the values of ‘src_url’ and ‘dst_url’ attributes (‘dst_url’ should point to the detination
folder). If ‘overwrite’ is set to:

•‘replace’: the file is copied to the switch regardless of whether there is already a file with the same name
at the destination;

•‘if-missing’: the file is copied to the switch only if there is not already a file with the same name at the
destination; if there is, then the action is a no-op;

•‘backup’: the file is copied to the switch; if there is already another file at the destination, that file is
renamed by appending the ‘.backup’ suffix

If ‘overwrite’ is not set, then ‘replace’ is the default behaviour.

This action is NOT dual-supervisor compatible.

Parameters

• attributes – list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read attribute
values

• node (internernal) – attributes.get(‘NODE’) API: see documentation

• src_url – Source location

• dst_url – Destination

• mode – Octal mode

• overwrite – Overwrite existing files? <replace|if-missing|backup> Default: replace

46 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

Example

-
action: copy_file
always_execute: true
attributes:

dst_url: /mnt/flash/
mode: 777
overwrite: if-missing
src_url: files/automate/bgpautoinf.py

name: "automate BGP peer interface config"

install_cli_plugin

main(attributes)
Installs EOS CliPlugin.

Installs CliPlugin based on the value of the ‘url’ attribute.

This action is NOT dual-supervisor compatible.

Parameters

• attributes (list) – list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read at-
tribute values

• node (internal) – attributes.get(‘NODE’) API: see documentation

• url – path to the cli plugin

Example

-
action: install_image
always_execute: true
attributes:

url: files/my_cli_plugin
name: "install cli plugin"

install_extension

main(attributes)
Installs EOS extension.

Installs extension based on the value of the ‘url’ attribute. If ‘force’ is set, then the dependency checks are
overridden.

This action is NOT dual-supervisor compatible.

Parameters

• attributes (list) – list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read at-
tribute values

• node (internal) – attributes.get(‘NODE’) API: see documentation

• url – path to the rpm or swix extension

2.7. Internals 47

ZTPServer Documentation, Release 1.2.0

• force – Force installation regardless of checks. Default: False

Example

-
action: install_image
always_execute: true
attributes:

url: files/telemetry-1.0-1.rpm
name: "Install Telemetry"

install_image

main(attributes)
Installs software image on the switch.

If the current software image is the same as the ‘version’ attribute value, then this action is a no-op. Otherwise,
the action will replace the existing software image.

For dual supervisor systems, the image on the active supervisor is used as reference.

This action is dual-supervisor compatible.

Parameters

• attributes (list) – list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read at-
tribute values

• node (internal) – attributes.get(‘NODE’) API: see documentation

• url – path to .swi file

• version – target version of the .swi file.

Example

-
action: install_image
always_execute: true
attributes:

url: files/images/vEOS.swi
version: 4.13.5F

name: "validate image"
onstart: "Starting to install image"
onsuccess: "SUCCESS: 4.13.5F installed"
onfailure: "FAIL: IM nick@example.com for help"

replace_config

main(attributes)
Replaces stratup-config on the switch.

Replaces/adds /mnt/flash/startup-config based on the value of the ‘url’ attribute.

This action is dual-supervisor compatible.

Parameters

48 Chapter 2. Features

ZTPServer Documentation, Release 1.2.0

• attributes (list) – list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read at-
tribute values

• node (internal) – attributes.get(‘NODE’) API: see documentation

• url – path to config/template

send_email

main(attributes)
Sends an email using an SMTP relay host

Generates an email from the bootstrap process and routes it through a smarthost. The parameters value expects
a dictionary with the following values in order for this function to work properly.

{
’smarthost’: <hostname of smarthost>,
’sender’: <from email address>
’receivers’: [<array of recipients to send email to>],
’subject’: <subject line of the message>,
’body’: <the message body>,
’attachments’: [<array of files to attach>],
’commands’: [<array of commands to run and attach>]

}

The required fields for this function are smarthost, sender, and receivers. All other fields are optional.

This action is dual-supervisor compatible.

Parameters

• attributes (list) – list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read at-
tribute values

• node (internal) – attributes.get(‘NODE’) API: see documentation

• smarthost – hostname of smarthos>,

• sender – from email addres>

• receivers – [<array of recipients to send email to>]

• subject – subject line of the message

• body – the message body

• attachments – [<array of files to attach>]

• commands – [<array of commands to run and attach>]

Example

-
action: send_mail
attributes:

smarthost: smtp.example.com
from: noreply@example.com
subject: This is a test message from a switch in ZTP
receivers:

bob@exmple.com
helen@example.com

2.7. Internals 49

ZTPServer Documentation, Release 1.2.0

body: Please see the attached ’show version’
commands: show version

2.8 Glossary of terms

action an action is a Python script which is executed during the bootstrap process.

attribute an attribute is a variable that holds a value. attributes are used in order to customise the behaviour of actions
which are executed during the bootstrap process.

definition a definition is a YAML file that contains a collection of all actions (and associated attributes) which need
to run during the bootstrap process in order to fully provision a node

neighbordb neighbordb is a YAML file which contains a collection of patterns which can be used in order to map
nodes to definitions

node a node is a EOS instance which is provisioned via ZTPServer. A node is uniquely identified by its unique_id
(serial number or system MAC address) and/or unique position in the network.

pattern a pattern is a YAML file which describes a node in terms of its unique_id (serial number or system MAC)
and/or location in the network (neighbors)

resource pool a resource pool is a YAML file which provides a mapping between a set or resources and the nodes to
which some of the resources might have been allocated to. The nodes are uniquely identified via their system
MAC.

unique_id the unique identifier for a node. This can be configured, globally, to be the serial number (default) or
system MAC address in the ztpserver.conf file

2.9 Support

• Contact
• Known caveats
• Releases
• Roadmap highlights

– Release 1.3
– Release 2.0

• Video tutorial
• Other Resources

2.9.1 Contact

ZTPServer is an Arista-led open source community project. Users and developers are encouraged to contribute to the
project. See CONTRIBUTING for more details.

Community-based support is available through:

• eosplus forum

• eosplus-dev@arista.com.

• IRC: irc.freenode.net#arista

50 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/blob/develop/CONTRIBUTING.md
https://groups.google.com/forum/#!forum/eosplus
mailto:eosplus-dev@arista.com

ZTPServer Documentation, Release 1.2.0

Commercial support, customization, and integration services are available through the EOS+ team at Arista Networks,
Inc. Contact eosplus-dev@arista.com for details.

2.9.2 Known caveats

The authoritative state for any known issue can be found in GitHub issues.

• v1.1: The management interfaces may not be used as valid local interface names in neighbordb. When creating
patterns, use any instead. (fixed in v1.2)

• Only a single entry in a resource pool may be allocated to a node.

• Users MUST be aware of the required EOS version for various hardware components (including transcievers).
Neighbor (LLDP) validation may fail if a node boots with an EOS version that does not support the installed
hardware. Moreoever, some EOS features configured via ZTPServer might be unsupported. Please refer to the
Release Notes for more compatability information and to the Transceiver Guide .

2.9.3 Releases

The authoritative state for any known issue can be found in GitHub issues.

Release 1.2

(Published December, 2014)

The authoritative state for any known issue can be found in GitHub issues.

Enhancements

• Enhance neighbordb documentation (255)

• In case of failure, bootstrap cleanup removes temporary files that were copied onto switch during provisioning (253)

• “ERROR: unable to disable COPP” should be a warning on old EOS platforms (242) A detailed warning
will be displayed if disabling COPP fails (instead of an error).

• Enhance documentation for open patterns(239)

• Document guidelines on how to test ZTPS (235)

• Document http://www.yamllint.com/ as a great resource for checking YAML files syntax (234)

• Make ”name” an optional attribute in local pattern files (233) node pattern file can contain only the inter-
faces directive now e.g.

interfaces:
- any:

device: any
port: any

• Documentation should clarify that users must be aware of the EOS version in which certain transceivers were introduced (232)

• Enhance the Apache documentation (231)

• Enhance documentation related to config files (229)

2.9. Support 51

http://arista.com/
http://arista.com/
mailto:eosplus-dev@arista.com
https://github.com/arista-eosplus/ztpserver/issues
http://www.arista.com/assets/data/pdf/Transceiver-Guide.pdf
https://github.com/arista-eosplus/ztpserver/issues
https://github.com/arista-eosplus/ztpserver/issues
https://github.com/arista-eosplus/ztpserver/issues/255
https://github.com/arista-eosplus/ztpserver/issues/253
https://github.com/arista-eosplus/ztpserver/issues/242
https://github.com/arista-eosplus/ztpserver/issues/239
https://github.com/arista-eosplus/ztpserver/issues/235
http://www.yamllint.com/
https://github.com/arista-eosplus/ztpserver/issues/234
https://github.com/arista-eosplus/ztpserver/issues/233
https://github.com/arista-eosplus/ztpserver/issues/232
https://github.com/arista-eosplus/ztpserver/issues/231
https://github.com/arista-eosplus/ztpserver/issues/229

ZTPServer Documentation, Release 1.2.0

• Disable meta information checks for remote URLs (224)

– if URL points to ZTP server and destination is on flash, use metadata request to compute disk space (other
metadata could be added here in the future)

– it URL points to a remote server and destination is on flash, use ‘content-length’ to compute disk space -
this will skip the metadata request

• Assume port 514 for remote syslog, if missing from bootstrap.conf (218)

When configuring remote syslog destinations in bootstrap.conf, the port number is not mandatory
anymore (if missing, a default value of 514 is assumed).

e.g.

logging:
- destination: pcknapweed
level: DEBUG

• Deal more gracefully with YAML errors in neighbordb (216) YAML serialization errors are now exposed
in ZTPS logs:

DEBUG: [controller:170] JPE14140273: running post_node
ERROR: [topology:83] JPE14140273: failed to load file: /usr/share/ztpserver/neighbordb
ERROR: [topology:116] JPE14140273: failed to load neighbordb:
expected a single document in the stream

in "<string>", line 26, column 1:
patterns:
^

but found another document
in "<string>", line 35, column 1:

^

DEBUG: [controller:182] JPE14140273: response to post_node: {’status’: 400, ’body’: ’’, ’content_type’: ’text/html’}
s7056.lab.local - - [03/Nov/2014 21:05:33] "POST /nodes HTTP/1.1" 400 0

• Deal more gracefully with DNS/connectivity errors while trying to access remote syslog servers (215)
Logging errors (e.g. bogus destination) will not be automatically logged by the bootstrap script. In order
to debug logging issues, simply uncomment the following lines in the bootstrap script:

#---------------------------------SYSLOG----------------------
Comment out this section in order to enable syslog debug
logging
logging.raiseExceptions = False
#---------------------------------XMPP------------------------

Example of output which is suppressed by default:

Traceback (most recent call last):
File "/usr/lib/python2.7/logging/handlers.py", line 806, in emit
self.socket.sendto(msg, self.address)

gaierror: [Errno -2] Name or service not known
Logged from file bootstrap, line 163

• Make ”name” an optional attribute in node definitions (214) Definitions under /nodes/<NODE> do not
have to have a ‘name’ attribute.

• Increase HTTP timeout in bootstrap script (212) HTTP timeout in bootstrap script is now 30s.
https://github.com/arista-eosplus/ztpserver/issues/246 tracks making that configurable via bootstrap.conf.
In the meantime, the workaround for changing it is manually editing the bootstrap file.

• Remove fake prefixes from client and actions function names in docs (204)

52 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/issues/224
https://github.com/arista-eosplus/ztpserver/issues/218
https://github.com/arista-eosplus/ztpserver/issues/216
https://github.com/arista-eosplus/ztpserver/issues/215
https://github.com/arista-eosplus/ztpserver/issues/214
https://github.com/arista-eosplus/ztpserver/issues/212
https://github.com/arista-eosplus/ztpserver/issues/246
https://github.com/arista-eosplus/ztpserver/issues/204

ZTPServer Documentation, Release 1.2.0

• Tips and tricks - clarify vEOS version for both ways to set system MAC (203)

• Enhance logging for “copy_file” action (187)

• Local interface pattern specification should also allow management interfaces (185) Local interface al-
lows for:

– management interface or interface range, using either mXX, maXX, MXX, MaXX, ManagementXX
(where XX is the range)

– management + ethernet specification on the same line: Management1-3,Ethernet3,5,6/7

• Bootstrap script should cleanup on failure (176)

$ python bootstrap --help
usage: bootstrap [options]

optional arguments:
-h, --help show this help message and exit
--no-flash-factory-restore, -n

Do NOT restore flash config to factory defaul

Added extra command-line option for the bootstrap script for testing.

Default behaviour:

– clear rc.eos, startup-config, boot-extensions (+folder) at the beginning of the process

– in case of failure, delete all new files added to flash

‘-n’ behaviour:

– leave rc.eos, startup-config, boot-extensions (+folder) untouched

– instead, bootstrap will create the new files corresponding to the above, with the ”.ztp” suffix

– never remove any files from flash at the end of the process, regardless of the outcome

• Allow posting the startup-config to a node’s folder, even if no startup-config is already present (169)

• Remove definition line from auto-generated pattern (102) When writing the pattern file in the node’s folder
(after a neighbordb match):

– ‘definition’ line is removed

– ‘variables’ and ‘node’ are only written if non-empty

– ‘name’ (that’s the pattern’s name) and ‘interfaces’ are always written

Fixed

• server_url requires trailing slash “/” when adding subdirectory (244)

• Error when doing static node provisioning using replace_config (241)

• XMPP messages are missing the system ID (236) XMPP messages now contain the serial number of the
switch sending the message. ‘N/A’ is shown if the serial number is not available or empty.

• Fix “node:” directive behaviour in neighbordb (230)

The following ‘patterns’ are now valid in neighbordb:

– name, definition, node [,variables]

– name, definition, interfaces [,variables]

2.9. Support 53

https://github.com/arista-eosplus/ztpserver/issues/203
https://github.com/arista-eosplus/ztpserver/issues/187
https://github.com/arista-eosplus/ztpserver/issues/185
https://github.com/arista-eosplus/ztpserver/issues/176
https://github.com/arista-eosplus/ztpserver/issues/169
https://github.com/arista-eosplus/ztpserver/issues/102
https://github.com/arista-eosplus/ztpserver/issues/244
https://github.com/arista-eosplus/ztpserver/issues/241
https://github.com/arista-eosplus/ztpserver/issues/236
https://github.com/arista-eosplus/ztpserver/issues/230

ZTPServer Documentation, Release 1.2.0

– name, definition, node, interfaces [,variables]

• node.retrieve_resource should be a no-op if the file is already on the disk (225) When computing the avail-
able disk space on flash for saving a file, the length of the file which is about to be overwritten is also
considered.

• Ignore content-type when retrieving a resource from a remote server or improve on the error message (222)
If a resource is retrieved from some other server (which is NOT the ZTPServer itself), then we allow any
content-type.

• ztpserver.wsgi is not installed by setup.py (220)

• ztps –validate broken in 1.1 (217)

ztps --validate PATH_TO_NEIGHBORDB

can be used in order to validate the syntax of a neighbordb file.

• install_extension action copies the file to the switch but doesn’t install it (206)

• Bootstrap XMPP logging - client fails to create the specified MUC room (148) In order for XMPP logging
to work, a non-EOS user need to be connected to the room specified in bootstrap.conf, before the ZTP
process starts. The room has to be created (by the non-EOS user), before the bootstrap client starts logging
the ZTP process via XMPP.

• ZTPS server fails to write .node because lack of permissions (126)

Release 1.1

(Published August, 2014)

The authoritative state for any known issue can be found in GitHub issues.

Enhancements

• V1.1.0 docs (181) Documentation has been completely restructured and is now hosted at
http://ztpserver.readthedocs.org/.

• refresh_ztps - util script to refresh ZTP Server installation (177) /utils/refresh_ztps can be used in order to
automatically refresh the installation of ZTP Server to the latest code on GitHub. This can be useful in
order to pull bug fixes or run the latest version of various development branches.

• Et49 does not match Ethernet49 in neighbordb/pattern files (172) The local interface in an interface pattern
does not have to use the long interface name. For example, all of the following will be treated similarly:
Et1, e1, et1, eth1, Eth1, ethernet1, Ethernet1.

Note that this does not apply to the remote interface, where different rules apply.

• Improve server-side log messages when there is no match for a node on the server (171)

• Improve error message on server side when definition is missing from the definitions folder (170)

• neighbordb should also support serialnumber as node ID (along with system MAC) (167) Server now
supports two types of unique identifiers, as specified in ztpserver.conf:

UID used in the /nodes structure (either systemmac or serialnumber)
identifier = serialnumber

The configuration is global and applies to a single run of the server (neighbordb, resource files, nodes’
folders, etc.).

54 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/issues/225
https://github.com/arista-eosplus/ztpserver/issues/222
https://github.com/arista-eosplus/ztpserver/issues/220
https://github.com/arista-eosplus/ztpserver/issues/217
https://github.com/arista-eosplus/ztpserver/issues/206
https://github.com/arista-eosplus/ztpserver/issues/148
https://github.com/arista-eosplus/ztpserver/issues/126
https://github.com/arista-eosplus/ztpserver/issues
https://github.com/arista-eosplus/ztpserver/pull/181
http://ztpserver.readthedocs.org/
https://github.com/arista-eosplus/ztpserver/issues/177
https://github.com/arista-eosplus/ztpserver/issues/172
https://github.com/arista-eosplus/ztpserver/issues/171
https://github.com/arista-eosplus/ztpserver/issues/170
https://github.com/arista-eosplus/ztpserver/issues/167

ZTPServer Documentation, Release 1.2.0

• serialnumber should be the default identifier instead of systemmac (166) The default identifier in
ztpserver.conf is the serial number. e.g.

UID used in the /nodes structure (either systemmac or serialnumber)
identifier = serialnumber

This is different from v1.0, where the systemmac was the default.

• Document which actions are dual-sup compatible and which are not (165) All actions now document
whether they are dual-sup compatible or not. See documentation for the details.

• dual-sup support for install_image action (164) install_image is now compatible with dual-sup systems.

• Resource pool allocation should use the identifier instead of the systemmac (162) The values in the re-
source files will be treated as either system MACs or serial numbers, depending on what identifier is
configured in the global configuration file.

• Document actions APIs (157) The API which can be used by actions is now documented in the documentation
for the bootstrap script module.

• Get rid of return codes in bootstrap script (155)

• Bootstrap script should always log a detailed message before exiting (153) bootstrap script will log the rea-
son for exiting, instead of an error code.

• Client should report what the error code means (150)

• Improve server logs when server does not know about the node (145)

• Configurable verbosity for logging options (server side) (140) Bootstrap configuration file can now specify
the verbosity of client-side logs:
...
xmpp:
username: ztps
password: ztps
domain: pcknapweed.lab.local
msg_type : debug
rooms:

- ztps-room

The allowed values are:

– debug: verbose logging

– info: log only messages coming from the server (configured in definitions)

The information is transmitted to the client via the bootstrap configuration request:

####GET logging configuration
Returns the logging configuration from the server.

GET /bootstrap/config

Request

Content-Type: text/html

Response

Status: 200 OK
Content-Type: application/json
{

“logging”*: [{

2.9. Support 55

https://github.com/arista-eosplus/ztpserver/issues/166
https://github.com/arista-eosplus/ztpserver/issues/165
https://github.com/arista-eosplus/ztpserver/issues/164
https://github.com/arista-eosplus/ztpserver/issues/162
https://github.com/arista-eosplus/ztpserver/issues/157
https://github.com/arista-eosplus/ztpserver/issues/155
https://github.com/arista-eosplus/ztpserver/issues/153
https://github.com/arista-eosplus/ztpserver/issues/150
https://github.com/arista-eosplus/ztpserver/issues/145
https://github.com/arista-eosplus/ztpserver/issues/140

ZTPServer Documentation, Release 1.2.0

“destination”: “file:/<PATH>” | “<HOSTNAME OR IP>:<PORT>”, //localhost enabled
//by default

“level”*: <DEBUG | CRITICAL | ...>,
}]

},
“xmpp”*:{

“server”: <IP or HOSTNAME>,
“port”: <PORT>, // Optional, default 5222
“username”*: <USERNAME>,
“domain”*: <DOMAIN>,
“password”*: <PASSWORD>,
“nickname”: <NICKNAME>, // REMOVED
“rooms”*: [<ROOM>, ...]
“msg_type”: [“info” | “debug”] // Optional, default “debug”

}
}

>**Note**: * Items are mandatory (even if value is empty list/dict)

P.S. (slightly unrelated) The nickname configuration has been deprecated (serialnumber is used instead).

• Configurable logging levels for xmpp (139) bootstrap.conf:

logging:
...
xmpp:
...
nickname: ztps // (unrelated) this was removed - using serial number instead
msg_type: info // allowed values [’info’, ’debug’]

If msg_type is set to ‘info’, only log via XMPP error messages and ‘onstart’, ‘onsuccess’ and ‘onfailure’
error messages (as configured in the definition).

• Bootstrap should rename LLDP SysDescr to “provisioning” while executing or failing (138)

• Test XMPP for multiple nodes being provisioned at the same time (134)

• Server logs should include ID (MAC/serial number) of node being provisioned (133) Most of the server
logs will not be prefixed by the identifier of the node which is being provisioned - this should make
debugging environments where multiple nodes are provisioned at the same time a lot easier.

• Use serial number instead of system MAC as the unique system ID (131)

• Bootstrap script should disable copp (122)

• Bootstrap script should check disk space before downloading any resources (118) Bootstrap script will re-
quest the meta information from server, whenever it attempts to save a file to flash. This information will
be used in order to check whether enough disk space is available for downloading the resource.

####GET action metadata
Request action from the server.

GET /meta/actions/NAME

Request

Content-Type: text/html

Response

56 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/issues/139
https://github.com/arista-eosplus/ztpserver/issues/138
https://github.com/arista-eosplus/ztpserver/issues/134
https://github.com/arista-eosplus/ztpserver/issues/133
https://github.com/arista-eosplus/ztpserver/issues/131
https://github.com/arista-eosplus/ztpserver/issues/122
https://github.com/arista-eosplus/ztpserver/issues/118

ZTPServer Documentation, Release 1.2.0

Status: 200 OK
Content-Type: application/json
{

“size”*: <SIZE IN BYTES>,
“sha1”: <HASH STRING>

}

>**Note**: * Items are mandatory (even if value is empty list/dict)

Status: 404 Not found
Content-Type: text/html

Status: 500 Internal server error // e.g. permissions issues on server side
Content-Type: text/html

• ztps should check Python version and report a sane error is incompatible version is being used to run it (110)
ztps reports error if it is ran on a system with an incompatible Python version installed.

• Do not hardcode Python path (109)

• Set XMPP nickname to serial number (106) Serial number is used as XMPP presence/nickname. For vEOS
instances which don’t have one configured, systemmac is used instead.

• Send serial number as XMPP presence (105) Serial number is used as XMPP presence/nickname. For vEOS
instances which don’t have one configured, systemmac is used instead.

• Support for EOS versions < 4.13.3 (104) ZTP Server bootstrap script now supports any EOS v4.12.x or later.

• neighbordb should not be cached (97) Neighbordb is not cached on the server side. This means that any
updates to it do not require a server restart anymore.

• Definitions/actions should be loaded form disk on each GET request (87) Definitions and actions are not
cached on the server side. This means that any updates to them do not require a server restart anymore.

• Fix all pylint warnings (83)

• add_config action should also accept server-root-relative path for the URL (71) ‘url’ atrribute in
add_config action can be either a URL or a local server path.

• install_image action should also accept server-root-relative path for the URL (70) ‘url’ atrribute in in-
stall_image action can be either a URL or a local server path.

• Server logs should be timestamped (63) All server-side logs now contain a timestamp. Use ‘ztps –debug’ for
verbose debug output.

• After installing ZTPServer, there should be a dummy neighbordb (with comments and examples) and a dummy resource (with comments and examples) in /usr/share/ztpserver (48)

• need test coverage for InterfacePattern (42)

• test_topology must cover all cases (40)

Resolved issues

• Syslog messages are missing system-id (vEOS) (184) All client-side log message are prefixed by the serial
number for now (regardless of what the identifier is configured on the server).

For vEOS, if the system does not have a serial number configured, the system MAC will be used instead.

• No logs while executing actions (182)

• test_repository.py is leaking files (174)

2.9. Support 57

https://github.com/arista-eosplus/ztpserver/issues/110
https://github.com/arista-eosplus/ztpserver/issues/109
https://github.com/arista-eosplus/ztpserver/issues/106
https://github.com/arista-eosplus/ztpserver/issues/105
https://github.com/arista-eosplus/ztpserver/issues/104
https://github.com/arista-eosplus/ztpserver/issues/97
https://github.com/arista-eosplus/ztpserver/issues/87
https://github.com/arista-eosplus/ztpserver/issues/83
https://github.com/arista-eosplus/ztpserver/issues/71
https://github.com/arista-eosplus/ztpserver/issues/70
https://github.com/arista-eosplus/ztpserver/issues/63
https://github.com/arista-eosplus/ztpserver/issues/48
https://github.com/arista-eosplus/ztpserver/issues/42
https://github.com/arista-eosplus/ztpserver/issues/40
https://github.com/arista-eosplus/ztpserver/issues/184
https://github.com/arista-eosplus/ztpserver/issues/182
https://github.com/arista-eosplus/ztpserver/issues/174

ZTPServer Documentation, Release 1.2.0

• Allocate function will return some SysMac in quotes, others not (137)

• Actions which don’t require any attributes are not supported (129)

• Static pattern validation fails in latest develop branch (128)

• Have a way to disable topology validation for a node with no LLDP neighbors (127) COPP is disabled
during the bootstrap process for EOS v4.13.x and later. COPP is not supported for older releases.

• Investigate “No loggers could be found for logger sleekxmpp.xmlstream.xmlstream” error messages on client side (120)

• ZTPS should not fail if no variables are defined in neighbordb (114)

• ZTPS should not fail if neighbordb is missing (113)

• ZTPS installation should create dummy neighbordb (112) ZTP Server install will create a placeholder
neighbordb with instructions.

• Deal more gracefully with invalid YAML syntax in resource files (75)

• Server reports AttributeError if definition is not valid YAML (74)

• fix issue with Pattern creation from neighbordb (44)

2.9.4 Roadmap highlights

The authoritative state, including the intended release, for any known issue can be found in GitHub issues. The
information provided here is current at the time of publishing but is subject to change. Please refer to the latest
information in GitHub issues by filtering on the desired milestone.

Release 1.3

Target: January 2015

• validate all YAML files via ‘ztpserver –validate’ (247)

• action which enables running arbitrary set of EOS CLI commands (211)

• show server’s version in startup logs (207)

• command-line option for clearing resource pools (163)

• hook to run script after posting files on the server (132)

• action which enables running arbitrary bash commands (108)

Release 2.0

Target: March 2015

• configure HTTP timeout in bootstrap.conf (246)

• all requests from the client should contain the unique identifier of the node (188)

• dual-sup support for install_extension action (180)

• dual-sup support for install_cli_plugin action (179)

• dual-sup support for copy_file action (178)

• action for arbitrating between MLAG peers (141)

58 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/issues/137
https://github.com/arista-eosplus/ztpserver/issues/129
https://github.com/arista-eosplus/ztpserver/issues/128
https://github.com/arista-eosplus/ztpserver/issues/127
https://github.com/arista-eosplus/ztpserver/issues/120
https://github.com/arista-eosplus/ztpserver/issues/114
https://github.com/arista-eosplus/ztpserver/issues/113
https://github.com/arista-eosplus/ztpserver/issues/112
https://github.com/arista-eosplus/ztpserver/issues/75
https://github.com/arista-eosplus/ztpserver/issues/74
https://github.com/arista-eosplus/ztpserver/issues/44
https://github.com/arista-eosplus/ztpserver/issues
https://github.com/arista-eosplus/ztpserver/milestones
https://github.com/arista-eosplus/ztpserver/pull/247
https://github.com/arista-eosplus/ztpserver/pull/211
https://github.com/arista-eosplus/ztpserver/pull/207
https://github.com/arista-eosplus/ztpserver/pull/163
https://github.com/arista-eosplus/ztpserver/pull/132
https://github.com/arista-eosplus/ztpserver/pull/108
https://github.com/arista-eosplus/ztpserver/pull/246
https://github.com/arista-eosplus/ztpserver/pull/188
https://github.com/arista-eosplus/ztpserver/pull/180
https://github.com/arista-eosplus/ztpserver/pull/179
https://github.com/arista-eosplus/ztpserver/pull/178
https://github.com/arista-eosplus/ztpserver/pull/141

ZTPServer Documentation, Release 1.2.0

• plugin infrastructure for resource pool allocation (121)

• md5sum checks for all downloaded resources (107)

• topology-based ZTR (103)

2.9.5 Video tutorial

See http://www.youtube.com/playlist?list=PL6kEnPnH7OA4oc5jzhUW0ivVX1sMdfNpV.

2.9.6 Other Resources

ZTPServer documentation and other reference materials are below:

• GitHub ZTPServer Repository

• ZTPServer wiki

• Packer VM build process

• ZTPServer Python (PyPI) package

• YAML Code Validator

2.10 License

Copyright (c) 2013-2014, Arista Networks All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the Arista Networks nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

2.10.1 Third party

Requests v2.3.0: HTTP for Humans

Copyright 2014 Kenneth Reitz

2.10. License 59

https://github.com/arista-eosplus/ztpserver/pull/121
https://github.com/arista-eosplus/ztpserver/pull/107
https://github.com/arista-eosplus/ztpserver/pull/103
http://www.youtube.com/playlist?list=PL6kEnPnH7OA4oc5jzhUW0ivVX1sMdfNpV
https://github.com/arista-eosplus/ztpserver
https://github.com/arista-eosplus/ztpserver/wiki
https://github.com/arista-eosplus/packer-ztpserver
https://pypi.python.org/pypi/ztpserver
http://yamllint.com/

ZTPServer Documentation, Release 1.2.0

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

60 Chapter 2. Features

http://www.apache.org/licenses/LICENSE-2.0

HTTP Routing Table

/actions
GET /actions/(NAME), 42

/bootstrap
GET /bootstrap, 39
GET /bootstrap/config, 40

/files
GET /files/(RESOURCE_PATH), 42

/nodes
GET /nodes/(ID), 41
POST /nodes, 40

61

ZTPServer Documentation, Release 1.2.0

62 HTTP Routing Table

Python Module Index

a
actions.add_config, 45
actions.copy_file, 46
actions.install_cli_plugin, 47
actions.install_extension, 47
actions.install_image, 48
actions.replace_config, 48
actions.send_email, 49

c
client.bootstrap, 43

63

ZTPServer Documentation, Release 1.2.0

64 Python Module Index

Index

A
action, 50
actions.add_config (module), 45
actions.copy_file (module), 46
actions.install_cli_plugin (module), 47
actions.install_extension (module), 47
actions.install_image (module), 48
actions.replace_config (module), 48
actions.send_email (module), 49
api_config_cmds() (Node method), 43
api_enable_cmds() (Node method), 43
append_rc_eos_lines() (Node method), 43
append_startup_config_lines() (Node method), 43
attribute, 50

C
client (Node attribute), 43
client.bootstrap (module), 43

D
definition, 50
details() (Node method), 43

F
flash() (Node method), 44

H
has_startup_config() (Node method), 44

L
log_msg() (Node method), 44

M
main() (in module actions.add_config), 45
main() (in module actions.copy_file), 46
main() (in module actions.install_cli_plugin), 47
main() (in module actions.install_extension), 47
main() (in module actions.install_image), 48
main() (in module actions.replace_config), 48
main() (in module actions.send_email), 49

N
neighbordb, 50
neighbors() (Node method), 44
node, 50
Node (class in client.bootstrap), 43

P
pattern, 50

R
rc_eos() (Node method), 44
resource pool, 50
retrieve_url() (Node method), 44

S
server_address() (client.bootstrap.Node class method), 45
startup_config() (Node method), 45
system() (Node method), 45

U
unique_id, 50

65

	Highlights
	Features
	Overview
	Installation
	Startup
	Configuration
	Examples
	Tips and tricks
	Internals
	Glossary of terms
	Support
	License

	HTTP Routing Table
	Python Module Index

