

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	ZTPServer 1.3.2 documentation

ZTPServer Overview

ZTPServer provides a bootstrap environment for Arista EOS based products. It is written mostly in Python and leverages standard protocols like DHCP (for boot functions), HTTP (for bi-directional transport), XMPP and syslog (for logging). Most of the configuration files are YAML based.

This open source project is maintained by the Arista Networks [http://arista.com/] EOS+ services organization.

Highlights

	Extends the basic capability of EOS’s zero-touch provisioning feature in order to allow more robust provisioning activities

	Is extensible, for easy integration into various network environments

	Can be run natively in EOS or any Linux server

	Arista EOS+ led community open source project

Features

	Dynamic startup-config generation and automatic install

	Image and file system validation and standardization

	Connectivity validation and topology based auto-provisioning

	Config and device templates with dynamic resource allocation

	Zero-touch replacement and upgrade capabilities

	User extensible actions

	Email, XMPP, syslog based

	Overview

	Installation

	Startup

	Configuration

	Examples

	ZTPServer Cookbook

	Tips and tricks

	Internals

	Glossary of terms

	Support

	Troubleshooting

	License

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Overview

ZTPServer provides a robust server which enables comprehensive bootstrap solutions for Arista network elements. ZTPserver takes advantage of the the ZeroTouch Provisioning (ZTP) feature in Arista’s EOS (Extensible Operating System) which enables a node to connect to a provisioning server whenever a valid configuration file is missing from the internal flash storage.

ZTPServer provides a number of features that extend beyond simply loading a configuration file and a boot image on a node, including:

	sending an advanced bootstrap client to the node

	mapping each node to an individual definition which describes the bootstrap steps specific to that node

	defining configuration templates and actions which can be shared by multiple nodes - the actions can be customised using statically-defined or dynamically-generated attributes

	implementing environment-specific actions which integrate with external/internal management systems

	validation topology using a simple syntax for expressing LLDP neighbor adjacencies

	enabling Zero Touch Replacement, as well as configuration backup and management

ZTPServer is written in Python and leverages standard protocols like DHCP (DHCP options for boot functions), HTTP(S) (for bi-directional transport), XMPP and syslog (for logging). Most of the configuration files are YAML-based.

Highlights:

	extends the basic capability of ZTP (in EOS) to allow more robust provisioning activities

	is extensible and easy to integrate into any operational environment

	can be run natively in EOS or on a separate server

	is developed by a community lead by Arista’s EOS+ team as an open-source project

Features:

	automated configuration file generation

	image and file system validation and standardization

	cable and connectivity validation

	topology-based auto-provisioning

	configuration templating with resource allocation (for dynamic deployments)

	Zero Touch Replacement and software upgrade capabilities

	user extensible actions

	XMPP and syslog-based logging and accounting

ZTP Intro

Zero Touch Provisioning (ZTP) [http://www.arista.com/en/products/eos/automation/articletabs/0] is a feature in Arista EOS’s which, in the absence of a valid startup-config file, enables nodes to be configured over the networks.

The basic flow is as follows:

	check for startup-config, if absent, enter ZTP mode

	send DHCP requests on all connected interfaces

	if a DHCP response is received with Option 67 defined (bootfile-name), retrieve that file

	if that file is a startup-config, then save it to stuartup-config and reboot

	if that file is an executable, then execute it. Common actions executed this way include upgrading the EOS image, downloading extension packages, and dynamically building a startup-config file. (ZTPServer’s bootstrap script is launched this way)

	reboot with the new configuration

See the ZTP Tech Bulletin [https://www.arista.com/assets/data/pdf/TechBulletins/Tech_bulletin_ZTP.pdf] and the Press Release [http://www.arista.com/en/company/news/press-release/345-pr-20110215-01] for more information on ZTP.

Architecture

There are 2 primary components of the ZTPServer implementation:

	the server or ZTPServer instance AND

	the client or bootstrap (a process running on each node, which connects back to the server in order to provision the node)

Server

[image: _images/Components.png]
The server can run on any standard x86 server. Currently the only OS-es tested are Linux and MacOS, but theoretically any system that supports Python could run ZTPServer. The server provides a Python WSGI compliant interface, along with a standalone HTTP server. The built-in HTTP server runs by default on port 8080 and provides bidirectional file transport and communication for the bootstrap process.

The primary methods of provisioning a node are:

	statically via mappings between node IDs (serial number or system MAC address) and configuration definitions OR

	dynamically via mapping between topology information (LLDP neighbors) and configuration definitions

The definitions associated with the nodes contain a set of actions that can perform a variety of functions that ultimately lead to a final device configuration. Actions can use statically configured attributes or leverage configuration templates and dynamically allocated resources (via resource pools) in order to generate the system configuration. Definitions, actions, attributes, templates, and resources are all defined in YAML files.

Client

[image: _images/AttrsActions.png]
The client or bootstrap file is retrieved by the node via an HTTP GET request made to the ZTPServer (the URL of the file is retrieved via DHCP option 67). This file executes locally and gathers system and LLDP information from the node and sends it back to the ZTPServer. Once the ZTPServer processes the information and confirms that it can provision the node, the client makes a request to the server for a definition file - this file will contain the list of all actions which need to be executed by the node in order to provision itself.

Throughout the provisioning process the bootstrap client can log all steps via both local and remote syslogs, as well as XMPP.

ZTP Client-Server Message Flows

The following diagram show the flow of information during the bootstrap process. The lines in red correspond to the ZTP feature in EOS, while the lines in blue highlight the ZTPServer operation:

(Red indicates Arista EOS flows. Blue indicates the bootstrap client.)

[image: Message Flow Diagram]

Topology Validation

[image: _images/LeafDefn.png]
ZTPServer provides a powerful topology validation engine via either neighbordb or pattern files. As part of the bootstrap process for each node, the LLDP information received on all ports is sent to the ZTPServer and matched against either neighbordb or a node-specific pattern file (if a node is already configured on the server). Both are YAML files that are use a simple format to express strongly and loosely typed topology patterns. Pattern entries are processed top down and can include local or globally-defined variables (including regular expressions).

Patterns in neighbordb match nodes to definitions (dynamic mode), while node-specific pattern files are used for cabling and connectivity validation (static mode).

Topology-validation can be disabled:

	globally (disable_topology_validation=true in the server’s global configuration file) OR

	on a per-node basis, using open patterns in the pattern files (see the Pattern file configuration section for more details)

Operational modes

There are several operational modes for ZTPServer, explained below. See Neighbordb pattern examples to see how to use them.

System ID-based provisioning with no topology validation

Via node-specific folder:

	a folder corresponding to the node’s system ID is created on the server before bootstrap

	a definition file, startup-config file or both is/are placed in the folder

	topology validation is disabled globally (in the global configuration file) or via an open pattern in the pattern file located in the node-specific folder

Via neighbordb:

	a pattern which matches the node’s system ID is created in neighbordb before bootstrap

	neighbordb pattern points to a definition file

	neighbordb pattern contains no topology information (LLDP neighbors)

	a node-specific folder with the definition and an open pattern will be created during the bootstrap process

System ID-based provisioning with topology validation

Via node-specific folder:

	a folder corresponding to the node’s system ID is created on the server before bootstrap

	a definition file, startup-config file or both is/are placed in the folder

	topology validation is enabled globally (in the global configuration file) and the topology information is configured in the pattern file located in the node-specific folder

Via neighbordb:

	a pattern which matches the node’s system ID is created in neighbordb before bootstrap

	neighbordb pattern points to a definition file

	neighbordb pattern contains topology information (LLDP neighbors)

	a node-specific folder with the definition and a pattern containing the matched toplogy information will be created during the bootstrap process

Topology-based provisioning

	a pattern which matches the topology information (LLDP neighbord) is created in neighbordb before bootstrap

	neighbordb pattern points to a definition file

	a node-specific folder with the definition and a pattern containing the matched toplogy information will be created during the bootstrap process

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Installation

	Requirements

	Installation Options
	Turn-key VM Creation

	PyPI Package (pip install)

	Manual installation

	Upgrading

	Additional services
	Allow ZTPServer Connections In Through The Firewall

	Configure the DHCP Service

	Enable and start the dhcpd service

Requirements

Server:

	Python 2.7 or later (https://www.python.org/download/releases)

	routes 2.0 or later (https://pypi.python.org/pypi/Routes)

	webob 1.3 or later (http://webob.org/)

	PyYaml 3.0 or later (http://pyyaml.org/)

Client:

	EOS [http://eos.arista.com] 4.12.0 or later (ZTPServer 1.1+)

	EOS [http://eos.arista.com] 4.13.3 or later (ZTPServer 1.0)

Note

We recommend using a Linux distribution which has Python 2.7 as its standard Python install (e.g. yum in Centos requires Python 2.6 and a dual Python install can be fairly tricky and buggy). This guide was written based ZTPServer v1.1.0 installed on Fedora 20.

Installation Options

	Turn-key VM Creation

	PyPI Package (pip install)

	Manual installation

Turn-key VM Creation

The turn-key VM option leverages Packer [http://www.packer.io/] to auto generate a VM on your local system. Packer.io automates the creation of the ZTPServer VM. All of the required packages and dependencies are installed and configured. The current Packer configuration allows you to choose between VirtualBox or VMWare as your hypervisor and each can support Fedora 20 or Ubuntu Server 12.04.

VM Specification:

	7GB Hard Drive

	2GB RAM

	Hostname ztps.ztps-test.com
	eth0 (NAT) DHCP

	eth1 (hostonly) 172.16.130.10

	Firewalld/UFW disabled

	Users
	root/eosplus

	ztpsadmin/eosplus

	Python 2.7.5 with PIP

	DHCP installed with Option 67 configured (eth1 only)

	BIND DNS server installed with zone ztps-test.com
	wildcard forwarding rule passing all other queries to 8.8.8.8

	SRV RR for im.ztps-test.com

	rsyslog-ng installed; Listening on UDP and TCP (port 514)

	ejabberd (XMPP server) configured for im.ztps-test.com
	XMPP admin user: ztpsadmin/eosplus

	httpd installed and configured for ZTPServer (mod_wsgi)

	ZTPServer installed

	ztpserver-demo repo files pre-loaded

See the Packer VM code and documentation [https://github.com/arista-eosplus/packer-ztpserver] as well as the ZTPServer demo files [https://github.com/arista-eosplus/ztpserver-demo] for the Packer VM.

PyPI Package (pip install)

ZTPServer [https://pypi.python.org/pypi/ztpserver] may be installed as a PyPI [https://pypi.python.org/pypi/ztpserver] package.

This option assumes you have a server with Python and pip pre-installed. See installing pip [https://pip.pypa.io/en/latest/installing.html].

Once pip is installed, type:

bash-3.2$ pip install ztpserver

The pip install process will install all dependencies and run the install script, leaving you with a ZTPServer instance ready to configure.

Manual installation

Download source:

	Latest Release [https://github.com/arista-eosplus/ztpserver/releases/latest] on GitHub
	Previous releases [https://github.com/arista-eosplus/ztpserver/releases/]

	Active Stable: (GitHub [https://github.com/arista-eosplus/ztpserver/tree/master]) (ZIP [https://github.com/arista-eosplus/ztpserver/zipball/master]) (TAR [https://github.com/arista-eosplus/ztpserver/tarball/master])

	Development: (GitHub [https://github.com/arista-eosplus/ztpserver/tree/develop]) (ZIP [https://github.com/arista-eosplus/ztpserver/zipball/develop]) (TAR [https://github.com/arista-eosplus/ztpserver/tarball/develop])

Once the above system requirements are met, you can use the following git command to pull the develop branch into a local directory on the server where you want to install ZTPServer:

bash-3.2$ git clone https://github.com/arista-eosplus/ztpserver.git

Or, you may download the zip or tar archive and expand it.

bash-3.2$ wget https://github.com/arista-eosplus/ztpserver/tarball/master
bash-3.2$ tar xvf <filename>
 or
bash-3.2$ unzip <filename>

Change in to the ztpserver directory, then checkout the release desired:

bash-3.2$ cd ztpserver
bash-3.2$ git checkout v1.1.0

Execute setup.py to build and then install ZTPServer:

[user@localhost ztpserver]$ sudo python setup.py build
running build
running build_py
...

[root@localhost ztpserver]# sudo python setup.py install
running install
running build
running build_py
running install_lib
...

Upgrading

Upgrading ZTP Server is based on the method of installation:

	PyPI (pip):

sudo pip install --upgrade ztpserver

	Manual, Packer-VM, GitHub installs:

cd ztpserver/
sudo ./utils/refresh_ztps -b <branch>

The ztpserver/ directory, above, should be a git repository (where the files were checked out). The branch identifier may be any version identifier (1.3.2, 1.1), or an actual branch on github such as master (released), or develop (development).

	RPM:

sudo rpm -Uvh ztpserver-<version>.rpm

Additional services

Note

If using the Turn-key VM Creation, all of the steps, below, will have been completed, please reference the VM documentation.

Allow ZTPServer Connections In Through The Firewall

Be sure your host firewall allows incoming connections to ZTPServer. The standalone server runs on port TCP/8080 by default.

Firewalld examples:

	Open TCP/<port> through firewalld
bash-3.2$ firewall-cmd --zone=public --add-port=<port>/tcp [--permanent]

	Stop firewalld
bash-3.2$ systemctl status firewalld

	Disable firewalld
bash-3.2$ systemctl disable firewalld

Note

If using the Turn-key VM Creation, all the steps from below will be been completed automatically.

Configure the DHCP Service

Set up your DHCP infrastructure to server the full path to the ZTPServer bootstrap file via option 67. This can be performed on any DHCP server. Below you can see how you can do that for ISC dhcpd.

Get dhcpd:

	RedHat:

	bash-3.2$ sudo yum install dhcp

	Ubuntu:

	bash-3.2$ sudo apt-get install isc-dhcp-server

Add a network (in this case 192.168.100.0/24) for servicing DHCP requests for ZTPServer:

subnet 192.168.100.0 netmask 255.255.255.0 {
 range 192.168.100.200 192.168.100.205;
 option routers 192.168.100.1;
 option domain-name-servers <ipaddr>;
 option domain-name "<org>";
 option bootfile-name "http://<ztp_hostname_or_ip>:<port>/bootstrap";
}

Enable and start the dhcpd service

RedHat (and derivative Linux implementations)

bash-3.2# sudo /usr/bin/systemctl enable dhcpd.service
bash-3.2# sudo /usr/bin/systemctl start dhcpd.service

Ubuntu (and derivative Linux implementations)

bash-3.2# sudo /usr/sbin/service isc-dhcp-server start

Check that /etc/init/isc-dhcp-server.conf is configured for automatic startup on boot.

Edit the global configuration file located at /etc/ztpserver/ztpserver.conf (if needed). See the Global configuration file options for more information.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Startup

	Apache (mod_wsgi)

	Standalone debug server

HTTP Server Deployment Options

ZTPServer is a Python WSGI compliant application that can be deployed behind any WSGI web server or run as a standalone application.

After initial startup, any change to ztpserver.conf will require a server restart. However, all other files are read on-demand, therefore no server restart is required to pick up changes in definitions, neighbordb, resources, etc.

Note

The ztps standalone server executable is for demo and testing use ONLY. It is NOT recommended for production use!

Apache (mod_wsgi)

If using Apache, this section provides instructions for setting up ZTPServer using mod_wsgi. This section assumes the reader is familiar with Apache and has already installed mod_wsgi. For details on how to install mod_wsgi, please see the modwsgi Quick Installation Guide [https://code.google.com/p/modwsgi/wiki/QuickInstallationGuide].

To enable ZTPServer for an Apache server, we need to add the following WSGI configuration to the Apache config. A good location might be to create /etc/httpd/conf.d/ztpserver.conf or /etc/apache2/sites-enabled/ztpserver.conf:

LoadModule wsgi_module modules/mod_wsgi.so
Listen 8080

<VirtualHost *:8080>

 WSGIDaemonProcess ztpserver user=www-data group=www-data threads=50
 WSGIScriptAlias / /etc/ztpserver/ztpserver.wsgi
 # Required for RHEL
 #WSGISocketPrefix /var/run/wsgi

 <Location />
 WSGIProcessGroup ztpserver
 WSGIApplicationGroup %{GLOBAL}

 # For Apache <= 2.2, use Order and Allow
 Order deny,allow
 Allow from all
 # For Apache >= 2.4, Allow is replaced by Require
 Require all granted
 </Location>

 # Override default logging locations for Apache
 #ErrorLog /path/to/ztpserver_error.log
 #CustomLog /path/to/ztpserver_access.log
</VirtualHost>

WSGIScriptAlias should point to the ztpserver.wsgi file which is installed by default under /etc/ztpserver/ztpserver.wsgi. You will notice that the <Location /> directive is set to the root directory. This will enable ZTPServer to listen at the base server URL:

http://<host_ip>:8080/bootstrap

If you would like to run the ZTPServer under a subdirectory, leave the Apache configuration as it is listed above and modify the ZTPServer configuration to include the URL path prefix (/ztpserver in this example).

For example, edit the default configuration file found at /etc/ztpserver/ztpserver.conf by modifying or adding the following line under the [default] section:

server_url = http://<host_ip>:8080/ztpserver/

where /ztpserver/ is the subdirectory you would like the wsgi to listen. Once completed, restart Apache and you should now be able to access your ZTPServer at the specified URL. To test, simply use curl - for example:

curl http://<host_ip>:8080/ztpserver/bootstrap

If everything is configured properly, curl should be able to retrieve the bootstrap script. If there is a problem, all of the ZTPServer log messages should be available under the Apache server error logs. See the ErrorLog directive in your Apache configuration to determine the location of the error log.

Note

File Permissions - Apache mod_wsgi will run ztpserver.wsgi as the specified system user in your Apache config. This use must be able to read/write to the files in /usr/share/ztpserver (or whereever you created your data_root.)

Note

SELinux - Apache will need to read and write to files in /usr/share/ztpserver. Therefore, you might need to update/assign an SELinux user/role/type to these files. You can do something like chcon -R -h system_u:object_r:httpd_sys_script_rw_t /usr/share/ztpserver to accomplish that.

Standalone debug server

Note

ZTPServer ships with a single-threaded server that is sufficient for testing or demonstration, only. It is not recommended for use with more than 10 nodes.

To start the standalone ZTPServer, exec the ztps binary:

[root@ztpserver ztpserver]# ztps
INFO: [app:115] Logging started for ztpserver
INFO: [app:116] Using repository /usr/share/ztpserver
Starting server on http://<ip_address>:<port>

The following options may be specified when starting the ztps binary:

-h, --help show this help message and exit
--version, -v Displays the version information
--conf CONF, -c CONF Specifies the configuration file to use
--validate-config, -V
 Validates config files
--debug Enables debug output to the STDOUT
--clear-resources, -r
 Clears all resource files

Assuming that the DHCP server is serving DHCP offers which include the path to the ZTPServer bootstrap script in Option 67 and that the EOS nodes can access the bootstrap file over the network, the provisioning process should now be able to automatically start for all the nodes with no startup configuration.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Configuration

	Overview

	Global configuration file

	Bootstrap configuration

	Static provisioning - overview

	Static provisioning - startup_config

	Static provisioning - definition

	Static provisioning - attributes

	Static provisioning - pattern

	Static provisioning - config-handler

	Static provisioning - log

	Dynamic provisioning - overview

	Dynamic provisioning - neighbordb
	variables

	node: unique_id

	interfaces: port_name

	system_name:neighbor_port_name

	port_name: system_name:neighbor_port_name

	Definitions

	Actions

	Resource pools

	Config-handlers

	Other files

Overview

The ZTPServer uses a series of YAML files to provide its various
configuration and databases. Use of the YAML format makes the files
easier to read and makes it easier and more intuitive to add/update
entries (as opposed to other files formats such as JSON, or binary
formats such as SQL).

The ZTPServer components are housed in a single directory defined by the data_root variable in the global configuration file. The directory location will vary depending on the configuration in /etc/ztpserver/ztperserver.conf.

The following directory structure is normally used:

[data_root]
 bootstrap/
 bootstrap
 bootstrap.conf
 nodes/
 <unique_id)>/
 startup-config
 definition
 pattern
 config-handler
 .node
 attributes
 actions/
 files/
 definitions/
 resources/
 neighbordb

All configuration files can be validated using:

(bash)# ztps --validate

Global configuration file

The global ZTPServer configuration file can be found at /etc/ztpserver/ztpserver.conf. It uses the INI format (for details, see top section of Python configparser [https://docs.python.org/2/library/configparser.html]).

An alternative location for the global configuration file may be specified by using the --conf command line option:

e.g.

(bash)# ztps --help
usage: ztpserver [options]

optional arguments:
 -h, --help show this help message and exit
 --version, -v Displays the version information
 --conf CONF, -c CONF Specifies the configuration file to use
 --validate-config, -V
 Validates config files
 --debug Enables debug output to the STDOUT
 --clear-resources, -r
 Clears all resource files
(bash)# ztps --conf /var/ztps.conf

If the global configuration file is updated, the server must be restarted in order to pick up the new configuration.

[default]

Location of all ztps boostrap process data files
default= /usr/share/ztpserver
data_root=<PATH>

UID used in the /nodes structure
default=serialnum
identifier=<serialnum | systemmac>

Server URL to-be-advertised to clients (via POST replies) during the bootstrap process
default=http://ztpserver:8080
server_url=<URL>

Enable local logging
default=True
logging=<True | False>

Enable console logging
default=True
console_logging=<True | False>

Console logging format
default=%(asctime)-15s:%(levelname)s:[%(module)s:%(lineno)d] %(message)s
console_logging_format=<(Python)logging format>

Globally disable topology validation in the bootstrap process
default=False
disable_topology_validation=<True | False>

[server]
Note: this section only applies to using the standalone server. If
running under a WSGI server, these values are ignored

Interface to which the server will bind to (0:0:0:0 will bind to
all available IPv4 addresses on the local machine)
default=0.0.0.0
interface=<IP addr>

TCP listening port
default=8080
port=<TCP port>

[bootstrap]
Bootstrap filename (file located in <data_root>/bootstrap)
default=bootstrap
filename=<name>

[neighbordb]
Neighbordb filename (file located in <data_root>)
default=neighbordb
filename=<name>

Note

Configuration values may be overridden by setting environment variables, if the configuration attribute supports it. This is mainly used for testing and should not be used in production deployments.

Configuration values that support environment overrides use the environ keyword, as shown below:

runtime.add_attribute(StrAttr(
 name='data_root',
 default='/usr/share/ztpserver',
 environ='ZTPS_DEFAULT_DATAROOT'
))

In the above example, the data_root value is normally configured in the [default] section as data_root; however, if the environment variable ZTPS_DEFAULT_DATAROOT is defined, it will take precedence.

Bootstrap configuration

[data_root]/bootstrap/ contains files that control the bootstrap process of a node.

	bootstrap is the base bootstrap script which is going to be served to all clients in order to control the bootstrap process. Before serving the script to the clients, the server replaces any references to $SERVER with the value of server_url in the global configuration file.

	bootstrap.conf is a configuration file which defines the local logging configuration on the nodes (during the bootstrap process). The file is loaded on on-demand.

e.g.

logging:
 -
 destination: "ztps.ztps-test.com:514"
 level: DEBUG
 - destination: file:/tmp/ztps-log
 level: DEBUG
 - destination: ztps-server:1234
 level: CRITICAL
 - destination: 10.0.1.1:9000
 level: CRITICAL
xmpp:
 domain: im.ztps-test.com
 username: bootstrap
 password: eosplus
 rooms:
 - ztps
 - ztps-room2

Note

In order for XMPP logging to work, a non-EOS user need to be connected to the room specified in bootstrap.conf, before the ZTP process starts. The room has to be created (by the non-EOS user) before the bootstrap client starts logging the ZTP process via XMPP.

Static provisioning - overview

A node can be statically configured on the server as follows:

	create a new directory under [data_root]/nodes, using the system’s unique_id as the name

	create/symlink a startup-config or definition file in the newly-created folder

	if topology validation is enabled, also create/symlink a pattern file

	optionally, create config-handler script which is run whenever a PUT startup-config request succeeds

Static provisioning - startup_config

startup-config provides a static startup-configuration for the node. If this file is present in a node’s folder, when the node sends a GET request to /nodes/<unique_id>, the server will respond with a static definition that includes:

	a replace_config action which will install the configuration file on the switch (see actions section below for more on this). This action will be placed first in the definition.

	all the actions from the local definition file (see definition section below for more on this) which have the always_execute attribute set to True

Static provisioning - definition

The definition file contains the set of actions which are going to be
performed during the bootstrap process for a node. The definition file
can be either: manually created OR auto-generated by the server
when the node matches one of the patterns in neighbordb (in this case the
definition file is generated based on the definition file associated
with the matching pattern in neighbordb).

name: <system name>

actions:
 -
 action: <action name>

 attributes: # attributes at action scope
 always_execute: True # optional, default False
 <key>: <value>
 <key>: <value>

 onstart: <msg> # message to log before action is executed
 onsuccess: <msg> # message to log if action execution succeeds
 onfailure: <msg> # message to log if action execution fails
 ...

attributes: # attributes at global scope
 <key>: <value>
 <key>: <value>
 <key>: <value>

Static provisioning - attributes

Attributes are either key/value pairs, key/dictionary pairs, key/list pairs or key/reference pairs. They are all sent to the client in order to be passed in as arguments to actions.

Here are a few examples:

	key/value:

attributes:
 my_attribute : my_value

	key/dictionary

attributes:
 my_dict_attribute:
 key1: value1
 key2: value2

	key/list:

attributes:
 list_name:
 - my_value1
 - my_value2
 - my_valueN

	key/reference:

attributes:
 my_attribute : $my_other_attribute

key/reference attributes are identified by the fact that the value starts with the ‘$’ sign, followed by the name of another attribute. They are evaluated before being sent to the client.

Example:

attributes:
 my_other_attribute: dummy
 my_attribute : $my_other_attribute

will be evaluated to:

attributes:
 my_other_attribute: dummy
 my_attribute : dummy

If a reference points to a non-existing attribute, then the variable
substitution will result in a value of None.

Note

Only one level of indirection is
allowed - if multiple levels of indirection are used, then the data
sent to the client will contain unevaluated key/reference pairs in
the attributes list (which might lead to failures or unexpected
results in the client).

The values of the attributes can be either strings, numbers, lists, dictionaries, or references to other attributes or functions.

The supported functions are:

	allocate(resource_pool) - allocatea an available resource from
a resource pool; the allocation is perform on the server side and the
result of the allocation is passed to the client via the definition

Note

Functions can only be used with strings as arguments,
currently. See section on add_config action for
examples.

Attributes can be defined in three places:

	in the definition, at action scope

	in the definition, at global scope

	in the node’s attributes file (see below)

attributes is a file which can be used in order to store attributes
associated with the node’s definition. This is especially useful
whenever multiple nodes share the same definition - in that case,
instead of having to edit each node’s definition in order to add the
attributes (at the global or action scope), all nodes can share the same
definition (which might be symlinked to their individual node folder)
and the user only has to create the attributes file for each node. The
attributes file should be a valid key/value YAML file.

<key>: <value>
<key>: <value>
...

For key/value, key/list and and key/reference attributes, in case of
conflicts between the three scopes, the following order of precidence rules are
applied to determine the final value to send to the client:

	action scope in the definition takes precedence

	attributes file comes next

	global scope in the definition comes last

For key/dict attributes, in case of conflicts between the scopes, the
dictionaries are merged. In the event of dictionary key conflicts, the same
precidence rules from above apply.

Static provisioning - pattern

The pattern file a way to validate the node’s topology during the bootstrap process (if topology validation is enabled). The pattern file can be either:

	manually created

	auto-generated by the server, when the node matches one of the patterns in neighbordb (the pattern that is matched in neighbordb is, then, written to this file and used for topology validation in subsequent re-runs of the bootstrap process)

The format of a pattern is very similar to the format of neighordb
(see neighbordb section below):

variables:
 <variable_name>: <function>
...

name: <single line description of pattern> # optional
interfaces:
 - <port_name>:<system_name>:<neighbor_port_name>
 - <port_name>:
 device: <system_name>
 port: <neighbor_port_name>
...

If the pattern file is missing when the node makes a GET request for its definition, the server will log a message and return either:

	400 (BAD_REQUEST) if topology validation is enabled

	200 (OK) if topology validation is disabled

If topology validation is enabled globally, the following patterns can be used in order to disable it for a particular node:

	match any node which has at least one LLDP-capable neighbor:

name: <pattern name>
interfaces:
 - any: any:any

OR

	match any node which has no LLDP-capable neighbors:

name: <pattern name>
interfaces:
 - none: none:none

Static provisioning - config-handler

The config-handler file can be any script which can be executed
on the server. The script will be executed every time a PUT startup-config
request succeeds for the node.

The script can be used for raising alarms, performing checks, submitting
the startup-config file to a revision control system, etc.

Static provisioning - log

The .node file contains a cached copy of the node’s details that were
received during the POST request the node makes to /nodes (URI).
This cache is used to validate the node’s neighbors against the
pattern file, if topology validation is enabled (during the GET
request the node makes in order to retrieve its definition).

The .node is created automatically by the server and should not be edited manually.

Example .node file:

{"neighbors": {"Management1": [{"device": "ztps.ztps-test.com",
 "port": "0050.569b.9ba5"}
],
 "Ethernet2": [{"device": "veos-dc1-pod1-spine1",
 "port": "0050.569a.9321"}
]
 },
 "model": "vEOS",
 "version": "4.13.7M",
 "systemmac": "005056b863ac"
}

Dynamic provisioning - overview

A node can be dynamically provisioned by creating a matching neighbordb ([data_root]/neighbordb) entry which maps to a definition. The entry can potentially match multiple nodes.
The associated definition should be created in [data_root]/definitions/.

Dynamic provisioning - neighbordb

The neighbordb YAML file defines mappings between patterns
and definitions. If a node is not already configured via a static entry,
then the node’s topology details are attempted to be matched against
the patterns in neighbordb. If a match is successful, then a node
definition will be automatically generated for the node (based on the
mapping in neighbordb).

There are 2 types of patterns supported in neighbordb:
node-specific (containing the node attribute, which refers to the
unique_id of the node) and global patterns.

Rules:

	if multiple node-specific entries reference the same unique_id, only the first will be in effect - all others will be ignored

	if both the node and interfaces attributes are specified and a node’s unique_id is a match, but the topology information is not, then the overall match will fail and the global patterns will not be considered

	if there is no matching node-specific pattern for a node’s unique_id, then the server will attempt to match the node against the global patterns (in the order they are specified in neighbordb)

	if a node-specific pattern matches, the server will automatically generate an open pattern in the node’s folder. This pattern will match any device with at least one LLDP-capable neighbor. Example: any: any:any

variables:
 variable_name: function
...
patterns:
 - name: <single line description of pattern>
 definition: <defintion_url>
 node: <unique_id>
 config-handler: <config-handler>
 variables:
 <variable_name>: <function>
 interfaces:
 - <port_name>: <system_name>:<neighbor_port_name>
 - <port_name>:
 device: <system_name>
 port: <neighbor_port_name>
...

Note

Mandatory attributes: name, definition, and either node, interfaces or both.

Optional attributes: variables, config-handler.

variables

The variables can be used to match the remote device and/or port name (<system_name>, <neighbor_port_name> above) for a neighbor. The supported values are:

	string

	same as exact(string) from below

	exact (pattern)

	defines a pattern that must be matched exactly (Note: this is the default function if another function is not specified)

	regex (pattern)

	defines a regex pattern to match the node name against

	includes (string)

	defines a string that must be present in system/port name

	excludes (string)

	defines a string that must not be present in system/port name

node: unique_id

Serial number or MAC address, depending on the global ‘identifier’ attribute in ztpserver.conf.

interfaces: port_name

Local interface name - supported values:

	Any interface
	any

	No interface
	none

	Explicit interface
	Ethernet1

	Ethernet2/4

	Management1

	Interface list/range
	Ethernet1-2

	Ethernet1,3

	Ethernet1-2,3/4

	Ethernet1-2,4

	Ethernet1-2,4,6

	Ethernet1-2,4,6,8-9

	Ethernet4,6,8-9

	Ethernet10-20

	Ethernet1/3-2/4 *

	Ethernet3-$ *

	Ethernet1/10-$ *

	All Interfaces on a Module
	Ethernet1/$ *

Note

* Planned for future releases.

system_name:neighbor_port_name

Remote system and interface name - supported values (STRING = any string
which does not contain any white spaces):

	any: interface is connected

	none: interface is NOT connected

	<STRING>:<STRING>: interface is connected to specific
device/interface

	<STRING> (Note: if only the device is configured, then ‘any’ is
implied for the interface. This is equal to <DEVICE>:any):
interface is connected to device

	<DEVICE>:any: interface is connected to device

	<DEVICE>:none: interface is NOT connected to device (might be
connected or not to some other device)

	$<VARIABLE>:<STRING>: interface is connected to specific
device/interface

	<STRING>:<$VARIABLE>: interface is connected to specific
device/interface

	$<VARIABLE>:<$VARIABLE>: interface is connected to specific
device/interface

	$<VARIABLE> (‘any’ is implied for the interface. This is equal to
$<VARIABLE>:any): interface is connected to device

	$<VARIABLE>:any: interface is connected to device

	$<VARIABLE>:none: interface is NOT connected to device (might be
connected or not to some other device)

port_name: system_name:neighbor_port_name

Negative constraints

	any: DEVICE:none: no port is connected to DEVICE

	none: DEVICE:any: same as above

	none: DEVICE:none: same as above

	none: any:PORT: no device is connected to PORT on any device

	none: DEVICE:PORT: no device is connected to DEVICE:PORT

	INTERFACES: any:none: interfaces not connected

	INTERFACES: none:any: same as above

	INTERFACES: none:none: same as above

	INTERFACES: none:PORT: interfaces not connected to PORT on any
device

	INTERFACES: DEVICE:none: interfaces not connected to DEVICE

	any: any:none: bogus, will prevent pattern from matching
anything

	any: none:none: bogus, will prevent pattern from matching
anything

	any: none:any: bogus, will prevent pattern from matching
anything

	any: none:PORT: bogus, will prevent pattern from matching
anything

	none: any:any: bogus, will prevent pattern from matching
anything

	none: any:none: bogus, will prevent pattern from matching
anything

	none: none:any: bogus, will prevent pattern from matching
anything

	none: none:none: bogus, will prevent pattern from matching
anything

	none: none:PORT: bogus, will prevent pattern from matching
anything

Positive constraints

	any: any:any: “Open pattern” matches anything

	any: any:PORT: matches any interface connected to any device’s
PORT

	any: DEVICE:any: matches any interface connected to DEVICE

	any: DEVICE:PORT: matches any interface connected to DEVICE:PORT

	INTERFACES: any:any: matches if local interfaces is one of
INTERFACES

	INTERFACES: any:PORT: matches if one of INTERFACES is connected
to any device’s PORT

	INTERFACES: DEVICE:any: matches if one of INTERFACES is connected
to DEVICE

	INTERFACES: DEVICE:PORT: matches if one of INTERFACES is
connected to DEVICE:PORT

Definitions

[data_root]/definitions/ contains a set of shared definition files
which can be associated with patterns in neighbordb (see the Dynamic provisioning - neighbordb
section below) or added to/symlink-ed from nodes’ folders.

See Static provisioning - definition for more.

Actions

[data_root]/actions/ contains the set of all actions available for use in
definitions.

	Action
	Description
	Required Attributes

	add_config
	Adds a block of configuration to the final startup-config
file
	url

	copy_file
	Copies a file from the server to the destination node
	src_url, dst_url, overwrite, mode

	install_cli_plugin
	Installs a new EOS CLI plugin and configures rc.eos
	url

	install_extension
	Installs a new EOS extension
	extension_url, autoload, force

	install_image
	Validates and installs a specific version of EOS
	url, version

	replace_config
	Sends an entire startup-config to the node (overrides
(overrides add_config)
	url

	send_email
	Sends an email to a set of recipients routed
through a relay host. Can include file attachments
	smarthost, sender, receivers, subject,
body, attachments, commands

	run_bash_script
	Run bash script during bootstrap.
	url

	run_cli_commands
	Run CLI commands during bootstrap.
	url

Additional details on each action are available in the Actions module docs.

e.g.

Assume that we have a block of configuration that adds a list of
NTP servers to the startup configuration. The action would be
constructed as such:

actions:
 - name: configure NTP
 action: add_config
 attributes:
 url: /files/templates/ntp.template

The above action would reference the ntp.template file which would contain configuration commands to
configure NTP. The template file could look like the following:

ntp server 0.north-america.pool.ntp.org
ntp server 1.north-america.pool.ntp.org
ntp server 2.north-america.pool.ntp.org
ntp server 3.north-america.pool.ntp.org

When this action is called, the configuration snippet above will be
appended to the startup-config file.

The configuration templates can also contains variables, which are
automatically substituted during the action’s execution. A variable is
marked in the template via the ‘$’ symbol.

e.g.
Let’s assume a need for a more generalized template that only needs
node specific values changed (such as a hostname and management IP
address). In this case, we’ll build an action that allows for variable
substitution as follows.

actions:
 - name: configure system
 action: add_config
 attributes:
 url: /files/templates/system.template
 variables:
 hostname: veos01
 ipaddress: 192.168.1.16/24

The corresponding template file system.template will provide the
configuration block:

hostname $hostname
!
interface Management1
 description OOB interface
 ip address $ipaddress
 no shutdown

This will result in the following configuration being added to the
startup-config:

hostname veos01
!
interface Management1
 description OOB interface
 ip address 192.168.1.16/24
 no shutdown

Note that in each of the examples, above, the template files are
just standard EOS configuration blocks.

Resource pools

[data_root]/resources/ contains global resource pools from which
attributes in definitions can be allocated via the allocate(...)
function.

The resource pools provide a way to dynamically allocate a resource to a
node when the node definition is created. The resource pools are
key/value YAML files that contain a set of resources to be allocated to
a node (whenever the allocate(...) function is used in the definition).

<value1>: <"null"|node_identifier>
<value2>: <"null"|node_identifier>

In the example below, a resource pool contains a series of 8 IP
addresses to be allocated. Entries which are not yet allocated to a node
are marked using the null descriptor.

192.168.1.1/24: null
192.168.1.2/24: null
192.168.1.3/24: null
192.168.1.4/24: null
192.168.1.5/24: null
192.168.1.6/24: null
192.168.1.7/24: null
192.168.1.8/24: null

When a resource is allocated to a node’s definition, the first available
null value will be replaced by the node’s unique_id. Here is an
example:

192.168.1.1/24: 001c731a2b3c
192.168.1.2/24: null
192.168.1.3/24: null
192.168.1.4/24: null
192.168.1.5/24: null
192.168.1.6/24: null
192.168.1.7/24: null
192.168.1.8/24: null

On subsequent attempts to allocate the resource to the same node, ZTPS
will first check to see whether the node has already been allocated a
resource from the pool. If it has, it will reuse the resource instead of
allocating a new one.

In order to free a resource from a pool, simply turn the value
associated to it back to null, by editing the resource file.

Alternatively, $ztps --clear-resources can be used in order to free
all resources in all resource files.

Config-handlers

[data_root]/config-handlers/ contains config-handlers which can be
associated with nodes via neighbordb. A config-handler script is executed
every time a PUT startup-config request succeeds for a node which is
associated to it.

Other files

[data_root]/files/ contains the files that actions might request
from the server. For example, [data_root]/files/images/ could contain
all EOS SWI files.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Examples

	Global configuration file

	Dynamic neighbordb or pattern file

	Static neighbordb and /node/<unique-id>/pattern file

	Sample dynamic definition file

	Sample templates

	Sample resources

	Neighbordb pattern examples
	Example #1

	Example #2

	Example #3

	Example #4

	More examples

Global configuration file

[default]
Location of all ztps boostrap process data files
data_root = /usr/share/ztpserver

UID used in the /nodes structure (serialnumber or systemmac)
identifier = serialnumber

Server URL to-be-advertised to clients (via POST replies) during the bootstrap process
server_url = http://172.16.130.10:8080

Enable local logging
logging = True

Enable console logging
console_logging = True

Console logging format
console_logging_format = %(asctime)s:%(levelname)s:[%(module)s:%(lineno)d] %(message)s

Globally disable topology validation in the bootstrap process
disable_topology_validation = False

[server]
Note: this section only applies to using the standalone server. If
running under a WSGI server, these values are ignored

Interface to which the server will bind to (0:0:0:0 will bind to
all available IPv4 addresses on the local machine)
interface = 172.16.130.10

TCP listening port
port = 8080

[bootstrap]
Bootstrap filename (file located in <data_root>/bootstrap)
filename = bootstrap

[neighbordb]
Neighbordb filename (file located in <data_root>)
filename = neighbordb

Dynamic neighbordb or pattern file

patterns:
#dynamic sample
 - name: dynamic_sample
 definition: tor1
 interfaces:
 - Ethernet1: spine1:Ethernet1
 - Ethernet2: spine2:Ethernet1
 - any: ztpserver:any

 - name: dynamic_sample2
 definition: tor2
 interfaces:
 - Ethernet1: spine1:Ethernet2
 - Ethernet2: spine2:Ethernet2
 - any: ztpserver:any

Static neighbordb and /node/<unique-id>/pattern file

patterns:
#static sample
 - name: static_node
 node: 000c29f3a39g
 interfaces:
 - any: any:any

Sample dynamic definition file

actions:
 -
 action: install_image
 always_execute: true
 attributes:
 url: files/images/vEOS.swi
 version: 4.13.5F
 name: "validate image"
 -
 action: add_config
 attributes:
 url: files/templates/ma1.template
 variables:
 ipaddress: allocate('mgmt_subnet')
 name: "configure ma1"
 -
 action: add_config
 attributes:
 url: files/templates/system.template
 variables:
 hostname: allocate('tor_hostnames')
 name: "configure global system"
 -
 action: add_config
 attributes:
 url: files/templates/login.template
 name: "configure auth"
 -
 action: add_config
 attributes:
 url: files/templates/ztpprep.template
 name: "configure ztpprep alias"
 -
 action: add_config
 attributes:
 url: files/templates/snmp.template
 variables: $variables
 name: "configure snmpserver"
 -
 action: add_config
 attributes:
 url: files/templates/configpush.template
 variables: $variables
 name: "configure config push to server"
 -
 action: copy_file
 always_execute: true
 attributes:
 dst_url: /mnt/flash/
 mode: 777
 overwrite: if-missing
 src_url: files/automate/ztpprep
 name: "automate reload"
attributes:
 variables:
 ztpserver: 172.16.130.10
name: tora

Sample templates

#login.template
#::::::::::::::
username admin priv 15 secret admin

#ma1.template
#::::::::::::::
interface Management1
 ip address $ipaddress
 no shutdown

#hostname.template
#::::::::::::::
hostname $hostname

Sample resources

#mgmt_subnet
#::::::::::::::
192.168.100.210/24: null
192.168.100.211/24: null
192.168.100.212/24: null
192.168.100.213/24: null
192.168.100.214/24: null

#tor_hostnames
#::::::::::::::
veos-dc1-pod1-tor1: null
veos-dc1-pod1-tor2: null
veos-dc1-pod1-tor3: null
veos-dc1-pod1-tor4: null
veos-dc1-pod1-tor5: null

Neighbordb pattern examples

Example #1

- name: standard leaf definition
 definition: leaf_template
 node: ABC12345678
 interfaces:
 - Ethernet49: pod1-spine1:Ethernet1/1
 - Ethernet50:
 device: pod1-spine2
 port: Ethernet1/1

In example #1, the topology map would only apply to a node with system ID
equal to ABC12345678. The following interface map rules apply:

	Interface Ethernet49 must be connected to node pod1-spine1 on port
Ethernet1/1

	Interface Ethernet50 must be connected to node pod1-spine2 on port
Ethernet1/1

Example #2

- name: standard leaf definition
 definition: leaf_template
 node: 001c73aabbcc
 interfaces:
 - any: regex('pod\d+-spine\d+'):Ethernet1/$
 - any:
 device: regex('pod\d+-spine1')
 port: Ethernet2/3

In this example, the topology map would only apply to the node with
system ID equal to 001c73aabbcc. The following interface
map rules apply:

	At least one interface interface must be connected to node that matches the regular
expression ‘pod+-spine+’ on port Ethernet1/$ (any port on module 1)

	At least one interface and not the interface which matched in the previous step
must be connected to a node that matches the regular expression
‘pod+-spine1’ on port Ethernet2/3

Example #3

- name: standard leaf definition
 definition: dc-1/pod-1/leaf_template
 variables:
 - not_spine: excludes('spine')
 - any_spine: regex('spine\d+')
 - any_pod: includes('pod')
 - any_pod_spine: any_spine and any_pod*
 interfaces:
 - Ethernet1: $any_spine:Ethernet1/$
 - Ethernet2: $pod1-spine2:any
 - any: excludes('spine1'):Ethernet49
 - any: excludes('spine2'):Ethernet49
 - Ethernet49:
 device: $not_spine
 port: Ethernet49
 - Ethernet50:
 device: excludes('spine')
 port: Ethernet50

Note: * In a future release.

This example pattern could apply to any node that matches the interface
map. In includes the use of variables for cleaner implementation and
pattern re-use.

	Variable not_spine matches any node name where ‘spine’ doesn’t
appear in the string

	Variable any_spine matches any node name where the regular
expression ‘spine+’ matches the name

	Variable any_pod matches any node name where that includes the name
‘pod’ in it

	Variable any_pod_spine combines variables any_spine and any_pod
into a complex variable that includes any name that matches the
regular express ‘spine+’ and the name includes ‘pod’ (not yet
supported)

	Interface Ethernet1 must be connected to a node that matches the
any_spine pattern and is connected on Ethernet1/$ (any port on
module 1)

	Interface Ethernet2 must be connected to node ‘pod1-spine2’ on any
Ethernet port

	Interface any must be connected to any node that doesn’t have
‘spine1’ in the name and is connected on Ethernet49

	Interface any must be connected to any node that doesn’t have
‘spine2’ in the name and wasn’t already used and is connected to
Ethernet49

	Interface Ethernet49 matches if it is connected to any node that
matches the not_spine pattern and is connected on port 49

	Interface Ethernet50 matches if the node is connected to port
Ethernet50 on any node whose name does not contain ‘spine’

Example #4

- name: sample mlag definition
 definition: mlag_leaf_template
 variables:
 any_spine: includes('spine')
 not_spine: excludes('spine')
 interfaces:
 - Ethernet1: $any_spine:Ethernet1/$
 - Ethernet2: $any_spine:any
- Ethernet3: none
- Ethernet4: any
- Ethernet5:
 device: includes('oob')
 port: any
- Ethernet49: $not_spine:Ethernet49
- Ethernet50: $not_spine:Ethernet50

This is a similar example to #3 that demonstrates how an MLAG pattern
might work.

	Variable any_spine defines a pattern that includes the word ‘spine’
in the name

	Variable not_spine defines a pattern that matches the inverse of
any_spine

	Interface Ethernet1 matches if it is connected to any_spine on port
Ethernet1/$ (any port on module 1)

	Interface Ethernet2 matches if it is connected to any_spine on any
port

	Interface 3 matches so long as there is nothing attached to it

	Interface 4 matches so long as something is attached to it

	Interface 5 matches if the node contains ‘oob’ in the name and is
connected on any port

	Interface49 matches if it is connected to any device that doesn’t
have ‘spine’ in the name and is connected on Ethernet50

	Interface50 matches if it is connected to any device that doesn’t
have ‘spine’ in the name and is connected on port Ethernet50

More examples

Additional ZTPServer file examples are available on GitHub at the ZTPServer Demo [https://github.com/arista-eosplus/ztpserver-demo].

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

ZTPServer Cookbook

	Installation
	Install ZTPServer from Github Source

	Install ZTPServer using PIP

	Client-Side Logging
	Configure Syslog Logging

	Configure XMPP Logging

	Server-Side Logging
	Standalone - Redirect Output to file

	Apache - View Standard Logs

	ZTPServer Configuration
	Identify Nodes Based Upon Serial Number

	Identify Nodes Based Upon System MAC Address

	Enable/Disable Topology Validation

	Running the ZTPServer
	Standalone - Change the ZTPServer Interface

	Standalone - Run ZTPServer on a Specific Port

	Standalone - Run ZTPServer in a Sub-directory

	Apache - Run ZTPServer on a Specific Port

	Apache - Run ZTPServer in a Sub-directory

	Change ZTPServer File Ownership

	Apache - Configure SELinux Permissions

	Hello World - A Simple Provisioning Example
	Prepare Your Switch for Provisioning

	Add a Static Node Entry

	Create a Startup-Config with Minimal Configuration

	Add Event Handler to Backup the startup-config to the ZTPServer

	Install a Specific (v)EOS Version

	Start ZTPServer in Standalone Mode

	Provision a Static Node
	Add a Static Node Entry

	Create a Startup-Config File

	Create a Pattern (Topology Validation enabled)

	Create a Definition File

	Create an Attributes File

	Symlink to a Generic Definition

	Provision a Dynamic Node
	Using Open Patterns

	Identify a Node Based Upon Specific Neighbor

	Identify a Node’s Neighbors Using Regex

	Topology Validation
	Enable/Disable Topology Validation

	Allow Any Neighbor

	Match Pattern with Exact String

	Match Pattern Using a Regular Expression

	Match Pattern That Includes a String

	Match Pattern That Excludes a String

	Definitions
	Add an Action to a Definition

	Add Global Variables to Definition

	Add Custom Log Statements as Action Executes

	Actions
	Add a Configuration Block to a Node

	Add Configuration to a Node Using Variables

	Replace Entire Startup-Config During Provisioning

	Copy a File to a Node During Provisioning

	Install a Specific EOS Image

	Install an Extension

	Resource Pools
	Add a New Resource Pool

	Clearing a Resource Pool

	Advanced
	Configuration Management and ZTR

	Run ZTPServer as a VM on EOS
	ZTPServer VM on EOS in a L2L3WM

	ZTPServer VM on EOS in a L2WOM

	ZTPServer VM on EOS in a L3WOM

	Deployment Steps

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Installation

Recipes

	Install ZTPServer from Github Source

	Install ZTPServer using PIP

Install ZTPServer from Github Source

Objective

I want to install ZTPServer from source.

Solution

To install the latest code in development [https://github.com/arista-eosplus/ztpserver/tree/develop]:

Change to desired download directory
mkdir -p ~/arista
cd ~/arista
git clone https://github.com/arista-eosplus/ztpserver.git
cd ztpserver
python setup.py build
python setup.py install

Or, to install a specific tagged release [https://github.com/arista-eosplus/ztpserver/releases]:

Change to desired download directory
mkdir -p ~/arista
cd ~/arista
git clone https://github.com/arista-eosplus/ztpserver.git
cd ztpserver
git checkout v1.2.0
python setup.py build
python setup.py install

Explanation

Github is used to store the source code for the ZTPServer and the develop
branch always contains the latest publicly available code. The first method above
clones the git repo and automatically checks out the develop branch. We then
build and install using Python.

The second method uses the git checkout command to set your working
directory to a specific release of the ZTPServer. Both methods of installation
will produce the files below.

Important Installation Files

	ZTPServer Global Configuration File: /etc/ztpserver/ztpserver.conf

	ZTPServer WSGI App: /etc/ztpserver/ztpserver.wsgi

	ZTPServer Provisioning Files: /usr/share/ztpserver/ known as data_root

	Bootstrap Config File: /usr/share/ztpserver/bootstrap/bootstrap.conf

	Bootstrap Python Script: /usr/share/ztpserver/bootstrap/bootstrap

Install ZTPServer using PIP

Objective

Install ZTPServer using PyPI(pip)

Solution

This option assumes you have a server with Python and pip pre-installed.
See installing pip [https://pip.pypa.io/en/latest/installing.html].

Once pip is installed, type:

pip install ztpserver

Explanation

The pip install process will install all dependencies and run the install script,
leaving you with a ZTPServer instance ready to configure.

Important Installation Files

	ZTPServer Global Configuration File: /etc/ztpserver/ztpserver.conf

	ZTPServer WSGI App: /etc/ztpserver/ztpserver.wsgi

	ZTPServer Provisioning Files: /usr/share/ztpserver/ known as data_root

	Bootstrap Config File: /usr/share/ztpserver/bootstrap/bootstrap.conf

	Bootstrap Python Script: /usr/share/ztpserver/bootstrap/bootstrap

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Client-Side Logging

	Configure Syslog Logging

	Configure XMPP Logging

Configure Syslog Logging

Objective

I want to send client logs to a syslog server or a local file during provisioning.

Solution

Edit the bootstrap configuration file
admin@ztpserver:~# vi /usr/share/ztpserver/bootstrap/bootstrap.conf

Add any syslog servers or files, be sure to choose the level of logging:

logging:
 -
 destination: <SYSLOG-URL>:<PORT>
 level: DEBUG
 -
 destination: file:/tmp/ztps-log
 level: INFO

Explanation

The node will request the contents of the bootstrap.conf when it performs
GET /bootstrap/config. Once the node retrieves this information it will
send logs to the destination(s): listed under logging:.

Configure XMPP Logging

Objective

I want to send client logs to specific XMPP server rooms.

Solution

Edit the bootstrap configuration file
admin@ztpserver:~# vi /usr/share/ztpserver/bootstrap/bootstrap.conf

Add any XMPP servers and associated rooms:

xmpp:
 domain: <XMPP-SERVER-URL>
 username: bootstrap
 password: eosplus
 rooms:
 - ztps
 - devops
 - admins

Explanation

The node will request the contents of the bootstrap.conf when it performs
GET /bootstrap/config file and try to join the rooms listed with the
credentials provided. Typically when joining a room, you would use a string
like, ztps@conference.xmpp-server.example.com. Be sure to just provide the
domain: xmpp-server.example.com leaving out the conference prefix.

Note

In order for XMPP logging to work, a non-EOS user need to be connected
to the room specified in bootstrap.conf, before the ZTP process starts.
The room has to be created (by the non-EOS user) before the bootstrap
client starts logging the ZTP process via XMPP.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Server-Side Logging

	Standalone - Redirect Output to file

	Apache - View Standard Logs

Standalone - Redirect Output to file

Objective

When running the ZTPServer in Standalone Mode, the logs just fill up my console
so I’d like to be able to redirect the output to a file.

Solution

With INFO level logging:

admin@ztpserver:~# ztps >~/ztps-console.log 2>&1 &

With DEBUG level logging:

admin@ztpserver:~# ztps --debug >~/ztps-console.log 2>&1 &

Explanation

Here we invoke the ztps process as usual, however we redirect the stdout messages
to a predefined file. Of course, be sure that you have permission to write
to the file you have listed.

Apache - View Standard Logs

Objective

I’m running the ZTPServer as a WSGI under Apache, so where do the logs go?

Solution

Typically, you can see each transaction in:

Ubuntu
admin@ztpserver:~# more /var/log/apache2/access.log

Fedora
admin@ztpserver:~# more /var/log/httpd/access_log

And the ZTPServer logs will be in:

Ubuntu
admin@ztpserver:~# more /var/log/apache2/error.log

Fedora
admin@ztpserver:~# more /var/log/httpd/error_log

Explanation

These locations are the default on most standard Apache installs. It might be
misleading, but all levels of ZTPServer logging will end up as an Apache error.

Example

[Fri Dec 12 10:49:42.186976 2014] [:error] [pid 864] INFO: [app:115] Logging started for ztpserver
[Fri Dec 12 10:49:42.187112 2014] [:error] [pid 864] INFO: [app:116] Using repository /usr/share/ztpserver

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

ZTPServer Configuration

	Identify Nodes Based Upon Serial Number

	Identify Nodes Based Upon System MAC Address

	Enable/Disable Topology Validation

Identify Nodes Based Upon Serial Number

Objective

I’d like the ZTPServer to use the switch’s serial number for provisioning. This
implies that all node directories in nodes/ will be named using the serial
number.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line identifier and confirm it’s set to serialnumber:

identifier = serialnumber

Restart the ztps process:

If using Apache WSGI
admin@ztpserver:~# service apache2 restart

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps

Explanation

The ZTPServer will use either the System MAC Address or the Serial Number
of the switch as its System ID. The System ID is used to match statically
provisioned nodes. Also, when a node is dynamically provisioned, the ZTPServer
will create a new node directory for it in nodes/ and it will be named using
the System ID.

Identify Nodes Based Upon System MAC Address

Objective

I’d like the ZTPServer to use the switch’s System MAC Address for provisioning.
This implies that all node directories in nodes/ will be named using the
System MAC Address.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line identifier and confirm it’s set to systemmac:

identifier = systemmac

Restart the ztps process:

If using Apache WSGI
admin@ztpserver:~# service apache2 restart

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps

Explanation

The ZTPServer will use either the System MAC Address or the Serial Number
of the switch as its System ID. The System ID is used to match statically
provisioned nodes. Also, when a node is dynamically provisioned, the ZTPServer
will create a new node directory for it in nodes/ and it will be named using
the System ID.

Enable/Disable Topology Validation

Objective

Topology Validation uses LLDP Neighbor information to make sure you have everything
wired up correctly. Topology Validation is enabled/disabled in the main ztpserver.conf
configuration file.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line disable_topology_validation

To disable Topology Validation
disable_topology_validation = True

To enable Topology Validation
disable_topology_validation = False

Restart the ztps process:

If using Apache WSGI
admin@ztpserver:~# service apache2 restart

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps

Explanation

This configuration option enables/disables Topology Validation. This feature
is extremely powerful and can help you confirm all of your nodes are wired up
correctly. See the recipes under Topology Validation to learn more about
the flexibility of Topology Validation.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Running the ZTPServer

	Standalone - Change the ZTPServer Interface

	Standalone - Run ZTPServer on a Specific Port

	Standalone - Run ZTPServer in a Sub-directory

	Apache - Run ZTPServer on a Specific Port

	Apache - Run ZTPServer in a Sub-directory

	Change ZTPServer File Ownership

	Apache - Configure SELinux Permissions

Standalone - Change the ZTPServer Interface

Objective

I only want the ZTPServer process to listen on a specific network interface.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line interface in the [server] group.

To listen on all interfaces
interface = 0.0.0.0

To listen on a specific interface
interface = 192.0.2.100

Restart the ztps process:

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps &

Explanation

This recipe helps you define a specific interface for the ZTPServer to listen on.

Note

Be sure the interface coincides with the server_url value in
the configuration file.

Standalone - Run ZTPServer on a Specific Port

Objective

I want to define which port the ZTPServer listens on.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line port in the [server] group.

Choose a port of your liking
port = 8080

Restart the ztps process:

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps &

Explanation

This recipe helps you define a specific port for the ZTPServer to listen on.

Note

Be sure the port coincides with the server_url value in
the configuration file.

Standalone - Run ZTPServer in a Sub-directory

Objective

I don’t want to run the ZTPServer at the root of my domain, I want it in a
sub-directory.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line server_url in the [default] group.

Choose a subdirectory
server_url = http://ztpserver:8080/not/in/root/anymore

Restart the ztps process:

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps &

Explanation

The server_url key defines where the REST API lives. You do not need to
change any of your file locations to affect change. Simply change the key above.

Note

You can confirm the change by doing a simple
wget http://server:port/new/directory/path/bootstrap to retrieve
the bootstrap script.

Apache - Run ZTPServer on a Specific Port

Objective

I’m running ZTPServer as a WSGI with Apache and want to change what port it
listens on.

Solution

Apache configurations can vary widely, and the ZTPServer has no control over this,
so view this simply as a suggestion.

Open up your Apache configuration file:

Apache
admin@ztpserver:~# vi /etc/apache2/sites-enabled/ztpserver.conf

HTTPd
admin@ztpserver:~# vi /etc/httpd/conf.d/ztpserver.conf

Change the Listen and VirtualHost values to the desired port.

LoadModule wsgi_module modules/mod_wsgi.so
Listen 8080

<VirtualHost *:8080>

 WSGIDaemonProcess ztpserver user=www-data group=www-data threads=50
 WSGIScriptAlias / /etc/ztpserver/ztpserver.wsgi
 # Required for RHEL
 #WSGISocketPrefix /var/run/wsgi

 <Location />
 WSGIProcessGroup ztpserver
 WSGIApplicationGroup %{GLOBAL}

 # For Apache <= 2.2, use Order and Allow
 Order deny,allow
 Allow from all
 # For Apache >= 2.4, Allow is replaced by Require
 Require all granted
 </Location>

 # Override default logging locations for Apache
 #ErrorLog /path/to/ztpserver_error.log
 #CustomLog /path/to/ztpserver_access.log
</VirtualHost>

Restart the ztps process:

Restart Apache
admin@ztpserver:~# service apache2 restart

Explanation

When you run ZTPServer as a WSGI under Apache or like server, the interface
and port that are used for listening for HTTP requests are controlled by the
web server. The config snippet above shows how this might be done with Apache,
but note that variations might arise in your own environment.

Apache - Run ZTPServer in a Sub-directory

Objective

I’m running ZTPServer as a WSGI with Apache and I want to change the path that
the REST API resides.

Solution

WSGI-compliant webserver configurations can vary widely, so here’s a sample of
how this is done with Apache.

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line server_url in the [default] group.

Choose a subdirectory
server_url = http://ztpserver:8080/not/in/root/anymore

You might think that you have to change your Apache conf to move this to a
sub-directory, but you don’t. Your config should look like the block below.
Note the <Location />.

LoadModule wsgi_module modules/mod_wsgi.so
Listen 8080

<VirtualHost *:8080>

 WSGIDaemonProcess ztpserver user=www-data group=www-data threads=50
 WSGIScriptAlias / /etc/ztpserver/ztpserver.wsgi
 # Required for RHEL
 #WSGISocketPrefix /var/run/wsgi

 <Location />
 WSGIProcessGroup ztpserver
 WSGIApplicationGroup %{GLOBAL}

 # For Apache <= 2.2, use Order and Allow
 Order deny,allow
 Allow from all
 # For Apache >= 2.4, Allow is replaced by Require
 Require all granted
 </Location>

 # Override default logging locations for Apache
 #ErrorLog /path/to/ztpserver_error.log
 #CustomLog /path/to/ztpserver_access.log
</VirtualHost>

Restart the ztps process:

Restart Apache
admin@ztpserver:~# service apache2 restart

Explanation

It might seem counter-intuitive but the Apache configuration should use the
Location directive to point at root. The desired change to the path is done
by the ZTPServer server_url configuration value in /etc/ztpserver/ztpserver.conf.

Change ZTPServer File Ownership

Objective

I’d like all of the ZTPServer provisioning files to be owned by a particular
user/group.

Note

This is most often needed when running the ZTPServer WSGI App and the
apache user is unable to read/write to /usr/share/ztpserver.

Solution

admin@ztpserver:~# chown -R myUser:myGroup /usr/share/ztpserver
admin@ztpserver:~# chmod -R ug+rw /usr/share/ztpserver

Explanation

The shell commands listed above set ownership and permissions for the default
data_root location /usr/share/ztpserver. Be mindful that if you are running
the ZTPServer WSGI App, the mod_wsgi daemon user must be able to read/write to
these files.

Note

When running the ZTPServer WSGI App, you should also check the
ownership and permission of /etc/ztpserver/ztpserver.wsgi.

Apache - Configure SELinux Permissions

Objective

My server has SELinux enabled and I’d like to set the ZTPServer file type so
that Apache can read/write files in the data_root.

Note

This is most often needed when running the ZTPServer WSGI App and the
apache user is unable to read/write to /usr/share/ztpserver.

Solution

For Fedora - httpd
admin@ztpserver:~# chcon -Rv --type=httpd_sys_script_rw_t /usr/share/ztpserver

For Ubuntu - Apache
admin@ztpserver:~# chcon -R -h system_u:object_r:httpd_sys_script_rw_t /usr/share/ztpserver

Explanation

The shell commands listed above set the SELinux file attributes so that Apache
can read/write to the files. This is often the case since /usr/share/ztpserver
is not in the normal operating directory /var/www/. Note that the commands
above are suggestions and you might consider tweaking them to suit your own
environment.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Hello World - A Simple Provisioning Example

	Prepare Your Switch for Provisioning

	Add a Static Node Entry

	Create a Startup-Config with Minimal Configuration

	Add Event Handler to Backup the startup-config to the ZTPServer

	Install a Specific (v)EOS Version

	Start ZTPServer in Standalone Mode

Introduction

The following set of recipes will help you perform a basic provisioning task
using the ZTPServer. There are some assumptions:

	You have already installed the ZTPServer

	You have performed the basic configuration to define which interface and port the server will run on.

	You have a DHCP server running with option bootfile-name "http://<ZTPSERVER-URL>:<PORT>/bootstrap"; Sample config [https://github.com/arista-eosplus/packer-ztpserver/blob/master/Fedora/conf/dhcpd.conf]

	Your test (v)EOS node can receive DHCP responses

	Make sure the ztps process is not running

Note

If you would like to test this in a virtual environment, please see the
packer-ztpserver [https://github.com/arista-eosplus/packer-ztpserver]
Github repo to learn how to automatically install a ZTPServer with all
of the complementary services (DHCP, DNS, NTP, XMPP, and SYSLOG). Both
Virtual Box and VMware are supported.

Prepare Your Switch for Provisioning

Objective

I want to prepare my test device (vEOS or EOS) for use with the ZTPServer. This
will put your switch into ZTP Mode, so backup any configs you want to save.

Solution

Log into your (v)EOS node, then:

switch-name> enable
switch-name# write erase
Proceed with erasing startup configuration? [confirm] y
switch-name# reload now

Explanation

ZTP Mode is enabled when a switch boots and there is no startup-config (or it’s empty) found in
/mnt/flash/. Therefore, we use the write erase command to clear the current
startup-config and use reload now to reboot the switch. When the switch comes
up you will see it enter ZTP Mode and begin sending DHCP requests on all interfaces.

Add a Static Node Entry

Objective

I want to provision my switch based upon its System MAC Address.

Solution

Log into your (v)EOS node to get its MAC Address. If it’s in ZTP Mode, just log in
with username admin:

switch-name> show version

Note

Copy the System MAC Address for later.

Confirm your ZTPServer Configuration will identify a node based upon its MAC:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line identifier and confirm it’s set to systemmac:

identifier = systemmac

Finally, let’s create a nodes directory for this device:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the nodes directory, where all node information is stored
admin@ztpserver:~# cd nodes

Create a directory using the MAC Address you found earlier
admin@ztpserver:~# mkdir 001122334455

Explanation

A node is considered to be statically provisioned when a directory with its
System ID is already located in the nodes/ directory.

Note that the System ID can be the node’s System MAC Address or its Serial Number.
In this case we chose to use the systemmac since vEOS nodes don’t have a
Serial Number by default.

Just adding this directory is not enough to provision the node. The remaining
recipes will finish off the task.

Create a Startup-Config with Minimal Configuration

Objective

When my node is provisioned, I want it to be passed a static startup-config. This config will include
some basic Management network info including syslog and ntp. It will set
the admin user’s password to admin, and enable eAPI.

Solution

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the specific node directory that you created earlier
admin@ztpserver:~# cd nodes/001122334455

Create a startup-config
admin@ztpserver:~# vi startup-config

Copy and paste this startup-config, changing values where you see fit:

!
hostname test-node-1
ip name-server vrf default <DNS-SERVER-IP>
!
ntp server <NTP-SERVER-IP>
!
username admin privilege 15 role network-admin secret admin
!
interface Management1
 ip address <MGMT-IP-ADDRESS>/<SUBNET>
!
ip access-list open
 10 permit ip any any
!
ip route 0.0.0.0/0 <DEFAULT-GW>
!
ip routing
!
management api http-commands
 no shutdown
!
banner login
Welcome to $(hostname)!
This switch has been provisioned using the ZTPServer from Arista Networks
Docs: http://ztpserver.readthedocs.org/
Source Code: https://github.com/arista-eosplus/ztpserver
EOF
!
end

Explanation

When the ZTPServer receives a request from your node to begin provisioning, it
will find the directory nodes/001122334455 and know that this node is
statically configured. In this case, a startup-config must be present. In
practice, the ZTPServer tells the node to perform the config_replace action
with this file as the source.

Add Event Handler to Backup the startup-config to the ZTPServer

Objective

I want to backup the latest startup-config from my node so that if I make changes
or have to replace the node I have the latest copy.

Note

By adding this, the node will perform an HTTP PUT and overwrite the
nodes/001122334455/startup-config file.

Solution

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the specific node directory that you created earlier
admin@ztpserver:~# cd nodes/001122334455

Edit your startup-config
admin@ztpserver:~# vi startup-config

Add the following lines to your startup-config, changing values where needed:

event-handler configpush
 trigger on-startup-config
 ! For default VRF, make sure to update the ztpserver url
 action bash export SYSMAC=`FastCli -p 15 -c 'show ver | grep MAC | cut -d" " -f 5' | sed 's/[.]*//g'`; curl http://<ZTPSERVER-URL>:<PORT>/nodes/$SYSMAC/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT
 ! For non-default VRF, update and use:
 ! action bash export SYSMAC=`FastCli -p 15 -c 'show ver | grep MAC | cut -d" " -f 5' | sed 's/[.]*//g'`; ip netns exec ns-<VRF-NAME> curl http://<ZTPSERVER-URL>:<PORT>/nodes/$SYSMAC/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Explanation

By adding this line to the startup-config, this configuration will be sent down
to the node during provisioning. From that point onward, the node will perform
and HTTP PUT of the startup-config and the ZTPServer will overwrite the
startup-config file in the node’s directory.

Install a Specific (v)EOS Version

Objective

I want a specific (v)EOS version to be automatically installed when I provision
my node.

Note

This assumes that you’ve already downloaded the desired (v)EOS image
from Arista [https://www.arista.com/en/support/software-download].

Solution

Let’s create a place on the ZTPServer to host some SWIs:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create an images directory
admin@ztpserver:~# mkdir -p files/images

SCP your SWI into the images directory, name it whatever you like
admin@ztpserver:~# scp admin@otherhost:/tmp/vEOS.swi files/images/vEOS_4.14.5F.swi

Now let’s create a definition that performs the install_image action:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the specific node directory that you created earlier
admin@ztpserver:~# cd nodes/001122334455

Create a definition file
admin@ztpserver:~# vi definition

Add the following lines to your definition, changing values where needed:

name: static node definition
actions:
 -
 action: install_image
 always_execute: true
 attributes:
 url: files/images/vEOS_4.14.5F.swi
 version: 4.14.5F
 name: "Install 4.14.5F"

Note

The definition uses YAML syntax

Explanation

The definition is where we list all of the actions [http://ztpserver.readthedocs.org/en/master/config.html#actions]
we want the node to execute during the provisioning process. In this case we are
hosting the SWI on the ZTPServer, so we just define the url in relation
to the data_root. We could change the url to point to another server
altogether - the choice is yours. The benefit in hosting the file on the
ZTPServer is that we perform an extra checksum step to validate the integrity of
the file.

In practice, the node requests its definition during the provisioning process. It
sees that it’s supposed to perform the install_image action, so it
requests the install_image python script. It then performs an HTTP GET for
the url. Once it has these locally, it executes the
install_image script [https://github.com/arista-eosplus/ztpserver/blob/develop/actions/install_image].

Start ZTPServer in Standalone Mode

Objective

Okay, enough reading and typing; let’s push some buttons!

Solution

Let’s run the ZTPServer in Standalone Mode [http://ztpserver.readthedocs.org/en/master/startup.html#standalone-debug-server]
since this is just a small test. Login to your ZTPServer:

Start the ZTPServer - console loggin will appear
admin@ztpserver:~# ztps
INFO: [app:115] Logging started for ztpserver
INFO: [app:116] Using repository /usr/share/ztpserver
Starting server on http://<ZTPSERVER-URL>:<PORT>

Explanation

The easiest way to run the ZTPServer is in Standalone Mode - which is done by
typing ztps in a shell. This will cause the configured interface and port to start listening
for HTTP requests. Your DHCP server will provide the node with option bootfile-name "http://<ZTPSERVER-URL>:<PORT>/bootstrap"
in the DHCP response, which lets the node know where to grab the bootstrap script.

A Quick Overview of the Provisioning Process for this Node

	GET /bootstrap: The node gets the bootstrap script and begins executing it. The following requests are made while the bootstrap script is being executed.

	GET /bootstrap/config: The node gets the bootstrap config which contains XMPP and Syslog information for the node to send logs to.

	POST /nodes: The node sends information about itself in JSON format to the ZTPServer. The ZTPServer parses this info and finds the System MAC. It looks in the nodes/ directory and finds a match.

	GET /nodes/001122334455: The node requests its definition and learns what resources it has to retrieve.

	GET /actions/install_image: The node retrieves the install_image script.

	GET /files/images/vEOS_4.14.5F.swi: The node retrieves the SWI referenced in the definition.

	GET /meta/files/images/vEOS_4.14.5F.swi: The node retrieves the checksum of the SWI for validation and integrity.

	GET /actions/replace_config: The node retrieves the replace_config script.

	GET /nodes/001122334455/startup-config: The node retrieves the startup-config we created earlier.

	GET /meta/nodes/001122334455/startup-config: The node retrieves the checksum of the startup-config.

	Node Applies Config and Reboots

	PUT /nodes/001122334455/startup-config: The node uploads its current startup-config.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Provision a Static Node

	Add a Static Node Entry

	Create a Startup-Config File

	Create a Pattern (Topology Validation enabled)

	Create a Definition File

	Create an Attributes File

	Symlink to a Generic Definition

Add a Static Node Entry

Objective

I want to provision my switch based upon its System ID (System MAC Address
or Serial Number).

Solution

Log into your (v)EOS node to get its System ID. If it’s in ZTP Mode, just log in
with username admin:

switch-name> show version

Note

Copy down the System ID (System MAC Address or Serial Number).

Let’s create a node directory for this device:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the nodes directory, where all node information is stored
admin@ztpserver:~# cd nodes

Create a directory using the MAC Address you found earlier
admin@ztpserver:~# mkdir <SYSTEM_ID>

Explanation

A node is considered to be statically provisioned when a directory with its
System ID is already located in the nodes/ directory.

Note that the System ID can be the node’s System MAC Address or its Serial Number.

Just adding this directory is not enough to provision the node. The remaining
recipes will finish off the task. To successfully provision a node
statically, you will need to create:

	startup-config

	pattern file - if Topology Validation is enabled

	definition - if you choose to apply other actions during provisioning

and place them in [data_root]/nodes/<SYSTEM_ID>.

Note

Confirm your ZTPServer Configuration will identify a node based upon
the desired System ID by checking /etc/ztpserver/ztpserver.conf and
check the value of identifier

Create a Startup-Config File

Objective

I want the node to receive a startup-config during provisioning.

Solution

Create a file named startup-config in [data_root]/nodes/<SYSTEM_ID>/.

Go to your data_root - by default it’s /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the node directory you created above.
admin@ztpserver:~# cd nodes/<SYSTEM_ID>

Create/edit the startup-config file
admin@ztpserver:~# vi startup-config

Place the desired configuration into the startup-config. Here’s an example. Please
change values where you see fit:

!
hostname test-node-1
ip name-server vrf default <DNS-SERVER-IP>
!
ntp server <NTP-SERVER-IP>
!
username admin privilege 15 role network-admin secret admin
!
interface Management1
 ip address <MGMT-IP-ADDRESS>/<SUBNET>
!
ip access-list open
 10 permit ip any any
!
ip route 0.0.0.0/0 <DEFAULT-GW>
!
ip routing
!
management api http-commands
 no shutdown
!
banner login
Welcome to $(hostname)!
This switch has been provisioned using the ZTPServer from Arista Networks
Docs: http://ztpserver.readthedocs.org/
Source Code: https://github.com/arista-eosplus/ztpserver
EOF
!
end

Explanation

A startup-config file is required when you statically provision a node. The format
of the startup-config is the same as you are used to, which can be found on your
switch at file:startup-config (/mnt/flash/startup-config)

Create a Pattern (Topology Validation enabled)

Objective

I have created a static node directory and Topology Validation is
enabled, so I would like to make sure everything is wired up correctly before
provisioning a node.

Note

YAML syntax can be a pain sometimes. The indentation is done with
spaces and not tabs.

Solution

Create a file named pattern in [data_root]/nodes/<SYSTEM_ID>/
and define the LLDP associations.

Go to your data_root - by default it’s /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the node directory you created above.
admin@ztpserver:~# cd nodes/<SYSTEM_ID>

Create/edit the pattern file
admin@ztpserver:~# vi pattern

Example 1: Match any neighbor

This pattern essentially disables Topology Validation.

name: Match anything
interfaces:
 - any: any:any

Example 2: Match any interface on a specific neighbor

This pattern says, the node being provisioned must be connected to a neighbor
with hostname pod1-spine1 but it can be connected to any peer interface.

name: Anything on pod1-spine1
interfaces:
 - any: pod1-spine1:any

Example 3: Match specific interface on a specific neighbor

This pattern says, the node being provisioned must be connected to a neighbor
with hostname pod1-spine1 on Ethernet1.

name: Anything on pod1-spine1
interfaces:
 - any: pod1-spine1:Ethernet1

Example 4: Make sure I’m not connected to a node

This pattern is the same as Example #2, but we add another check to make sure the
node being provisioned is not connected to any spines in pod2.

name: Not connected to anything in pod2
interfaces:
 - any: pod1-spine1:any
 - any: regex('pod2-spine\d+'):none
 - none: regex('pod2-spine\d+'):any #equivalent to line above

Example 5: Using variables in the pattern

This pattern is similar to what you’ve seen above except we use variables
to make things easier.

name: Not connected to any spine in pod2
variables:
 - not_pod2: regex('pod2-spine\d+')
interfaces:
 - any: pod1-spine1:any
 - any: $not_pod2:none

Explanation

Pattern files are YAML-based and are the underpinnings of Topology Validation.
A node will not be successfully provisioned if it cannot pass all of the interface
tests contained within the pattern file. The examples above are just a small
sample of the complex associations you can create. Take a look at the
neighbordb [http://ztpserver.readthedocs.org/en/master/config.html#dynamic-provisioning-neighbordb]
section to learn more.

Note

YAML can be a pain, and invalid YAML syntax will cause provisioning to
fail. You can make sure your syntax is correct by using a tool like
YAMLlint [http://www.yamllint.com]

Create a Definition File

Objective

Aside from sending the node a startup-config, I’d like to upgrade the node to
a specific v(EOS) version.

Solution

These types of system changes are accomplished via the definition file. The
definition is a YAML-based file with a section for each action that you
want to execute.

Note

Learn more about Actions [http://ztpserver.readthedocs.org/en/master/config.html#actions].

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create an images directory
admin@ztpserver:~# mkdir -p files/images

SCP your SWI into the images directory, name it whatever you like
admin@ztpserver:~# scp admin@otherhost:/tmp/vEOS.swi files/images/vEOS_4.14.5F.swi

Now let’s create a definition that performs the install_image action:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the specific node directory that you created earlier
admin@ztpserver:~# cd nodes/<SYSTEM_ID>

Create a definition file
admin@ztpserver:~# vi definition

Add the following lines to your definition, changing values where needed:

name: static node definition
actions:
 -
 action: install_image
 always_execute: true
 attributes:
 url: files/images/vEOS_4.14.5F.swi
 version: 4.14.5F
 name: "Install 4.14.5F"

Explanation

The definition is where we list all of the actions [http://ztpserver.readthedocs.org/en/master/config.html#actions]
we want the node to execute during the provisioning process. In this case we are
hosting the SWI on the ZTPServer, so we just define the url in relation
to the data_root. We could change the url to point to another server
altogether - the choice is yours. The benefit in hosting the file on the
ZTPServer is that we perform an extra checksum step to validate the integrity of
the file.

In practice, the node requests its definition during the provisioning process. It
sees that it’s supposed to perform the install_image action, so it
requests the install_image python script. It then performs an HTTP GET for
the url. Once it has these locally, it executes the
install_image script [https://github.com/arista-eosplus/ztpserver/blob/develop/actions/install_image].

Create an Attributes File

Objective

I want to use variables in my definition and abstract the values to a unique file.
These variables will be sent down to the node during provisioning and be used while
the node is executing the actions listed in the definition.

Solution

Create a file named attributes in [data_root]/nodes/<SYSTEM_ID>/.

Go to your data_root - by default it’s /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the node directory you created above.
admin@ztpserver:~# cd nodes/<SYSTEM_ID>

Move to the node directory you created above.
admin@ztpserver:~# vi attributes

Here’s the different type of ways to define the attributes:

Example 1: A simple key/value pair

ntp_server: ntp.example.com
dns_server: ns1.example.com

Example 2: key/dictionary

system_config:
 ntp: ntp.example.com
 dns: ns1.example.com

Example 3: key/list (note the hyphens)

dns_servers:
 - ns1.example.com
 - ns2.example.com
 - ns3.example.com
 - ns4.example.com

Example 4: Referencing another variable

ntp_server: ntp.example.com
other_var: $ntp_server

Borrowing from the definition recipe above, we can replace some values with
variables from the attributes file:

nodes/<SYSTEM_ID>/definition

name: static node definition
actions:
 -
 action: install_image
 always_execute: true
 attributes:
 url: $swi_url
 version: $swi_version
 name: $swi_name

and the nodes/<SYSTEM_ID>/attributes

swi_url: files/images/vEOS_4.14.5F.swi
swi_version: 4.14.5F
swi_name: "Install 4.14.5F"

Explanation

The attributes file is optional. The variables that are contained within it
are sent to the node during provisioning. In the final example above you can see
how the attributes file and definition work in concert. Note that the ZTPServer
performs variable substitution when the node requests the definition via
GET /nodes/<SYSTEM_ID>. By removing the static values from the definition, we can
use the same definition for multiple nodes (using symlink) and just create unique
attributes files in the node’s directory.

It’s important to note that these variables can exist in different places and
accomplish the same task. In this recipe we created a unique attributes file,
which lives in the node’s directory. You can also put these attributes directly
into the definition file like the example below.

Example: At the global scope of the definition

name: static node definition
actions:
 -
 action: install_image
 always_execute: true
 attributes:
 url: $swi_url
 version: $swi_version
 name: $swi_name
attributes:
 swi_url: files/images/vEOS_4.14.5F.swi
 swi_version: 4.14.5F
 swi_name: "Install 4.14.5F"

Symlink to a Generic Definition

Objective

I’d like to use the same definition for multiple static node directories without
manually updating each one.

Solution

Create one definition in the [data_root]/definitions folder and create a symlink
to the specific [data_root]/nodes/<SYSTEM_ID>/ folder.

``[data_root]/definitions/static_node_definition

name: static node definition
actions:
 -
 action: install_image
 always_execute: true
 attributes:
 url: $swi_url
 version: $swi_version
 name: $swi_name

and the nodes/<SYSTEM_ID>/attributes

swi_url: files/images/vEOS_4.14.5F.swi
swi_version: 4.14.5F
swi_name: "Install 4.14.5F"

then create the symlink

Go to your node's unique directory
admin@ztpserver:~# cd /usr/share/ztpserver/nodes/<SYSTEM_ID>

Create the symlink
admin@ztpserver:~# ln -s /usr/share/ztpserver/definitions/static_node_definition ./definition

Explanation

The steps above let you reuse a single definition file for many static nodes. Note
that the variables are located in the attributes file in the nodes/<SYSTEM_ID>/
folder.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Provision a Dynamic Node

	Using Open Patterns

	Identify a Node Based Upon Specific Neighbor

	Identify a Node’s Neighbors Using Regex

Using Open Patterns

Objective

I want to provision a node without knowing anything about it. I just want it to
receive a default configuration.

Solution

You can accomplish this by using neighbordb. Neighbordb contains associations
between LLDP neighbor patterns and definitions. So if we use a pattern that
matches anything, we can use it to assign a simple, default definition.

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Add the following lines to your definition, changing values where needed:

patterns:
 - name: Default Pattern
 definition: default
 interfaces:
 - any: any:any

If you happen to be provisioning a node in isolation and the node does not have
any neighbors, use the following pattern:

patterns:
 - name: Default Pattern
 definition: default
 interfaces:
 - none: none:none

Then add a definition to [data_root]/definitions/default

Note

See the sections on Definitions and Actions to learn more.

Explanation

By placing this pattern in your neighbordb, the ZTPServer will allow this node
to be provisioned and will assign it the default definition. Use caution when
placing this pattern in your neighbordb as it might allow nodes to receive the
default definition when you intend them to receive another pattern.

Identify a Node Based Upon Specific Neighbor

Objective

I want my node to be dynamically provisioned based upon a specific LLDP
neighbor association.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:
 - name: tora for pod1
 definition: tora
 interfaces:
 - Ethernet1: dc1-pod1-spine1:Ethernet1

This pattern says that the node being provisioned must have a connection between
its Ethernet1 and dc1-pod1-spine1’s Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node
executes the bootstrap script it will send the ZTPServer some information about
itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it
next checks neighbordb to try and find a match. The ZTPServer will analyze
the nodes LLDP neighbors, find the match in neighbordb and then apply the tora
definition.

Identify a Node’s Neighbors Using Regex

Objective

I want my node to be dynamically provisioned and I’d like to match certain
neighbors using regex.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:
 - name: tora for pod1
 definition: tora
 interfaces:
 - Ethernet1: regex('dc1-pod1-spine\D+'):Ethernet1

This pattern says that the node being provisioned must have a connection between
its Ethernet1 and any dc1-pod1-spines Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node
executes the bootstrap script it will send the ZTPServer some information about
itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it
next checks neighbordb to try and find a match. The ZTPServer will analyze
the nodes LLDP neighbors, find the match in neighbordb and then apply the tora
definition.

Note

There are a few different functions that you can use other than regex().
Check out this section [http://ztpserver.readthedocs.org/en/master/config.html#variables]
to learn more.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Topology Validation

	Enable/Disable Topology Validation

	Allow Any Neighbor

	Match Pattern with Exact String

	Match Pattern Using a Regular Expression

	Match Pattern That Includes a String

	Match Pattern That Excludes a String

Enable/Disable Topology Validation

Objective

Topology Validation uses LLDP Neighbor information to make sure you have everything
wired up correctly. Topology Validation is enabled/disabled in the main ztpserver.conf
configuration file.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line disable_topology_validation

To disable Topology Validation
disable_topology_validation = True

#To enable Topology Validation
disable_topology_validation = False

Restart the ztps process:

If using Apache WSGI
admin@ztpserver:~# service apache2 restart

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps

Explanation

This configuration option enables/disables Topology Validation. This feature
is extremely powerful and can help you confirm all of your nodes are wired up
correctly. See the recipes below to learn more about the flexibility of
Topology Validation.

Allow Any Neighbor

Objective

I want to provision a node without knowing anything about it. I just want it to
receive a default configuration.

Solution

You can accomplish this by using neighbordb. Neighbordb contains associations
between LLDP neighbor patterns and definitions. So if we use a pattern that
matches anything, we can use it to assign a simple, default definition.

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Add the following lines to your definition, changing values where needed:

patterns:
 - name: Default Pattern
 definition: default
 interfaces:
 - any: any:any

If you happen to be provisioning a node in isolation and the node does not have
any neighbors, use the following pattern:

patterns:
 - name: Default Pattern
 definition: default
 interfaces:
 - none: none:none

Then add a definition to [data_root]/definitions/default

Note

See the sections on Definitions and Actions to learn more.

Explanation

By placing this pattern in your neighbordb, the ZTPServer will allow this node
to be provisioned and will assign it the default definition. Use caution when
placing this pattern in your neighbordb as it might allow nodes to receive the
default definition when you intend them to receive another pattern.

Match Pattern with Exact String

Objective

I want my node to be dynamically provisioned based upon a specific LLDP
neighbor association.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:
 - name: tora for pod1
 definition: tora
 interfaces:
 - Ethernet1: dc1-pod1-spine1:Ethernet1

This pattern says that the node being provisioned must have a connection between
its Ethernet1 and dc1-pod1-spine1’s Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node
executes the bootstrap script it will send the ZTPServer some information about
itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it
next checks neighbordb to try and find a match. The ZTPServer will analyze
the nodes LLDP neighbors, find the match in neighbordb and then apply the tora
definition.

Match Pattern Using a Regular Expression

Objective

I want my node to be dynamically provisioned and I’d like to match certain
neighbors using regex.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:
 - name: tora for pod1
 definition: tora
 interfaces:
 - Ethernet1: regex('dc1-pod1-spine\D+'):Ethernet1

This pattern says that the node being provisioned must have a connection between
its Ethernet1 and any dc1-pod1-spines Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node
executes the bootstrap script it will send the ZTPServer some information about
itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it
next checks neighbordb to try and find a match. The ZTPServer will analyze
the nodes LLDP neighbors, find the match in neighbordb and then apply the tora
definition.

Note

There are a few different functions that you can use other than regex().
Check out this section [http://ztpserver.readthedocs.org/en/master/config.html#variables]
to learn more.

Match Pattern That Includes a String

Objective

I want my node to be dynamically provisioned and I’d like to match certain
neighbors as long as the neighbor hostname includes a certain string.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:
 - name: tora for pod1
 definition: tora
 interfaces:
 - Ethernet1: includes('dc1-pod1'):Ethernet1

This pattern says that the node being provisioned must have a connection between
its Ethernet1 and any hostname that includes dc1-pod1 Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node
executes the bootstrap script it will send the ZTPServer some information about
itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it
next checks neighbordb to try and find a match. The ZTPServer will analyze
the nodes LLDP neighbors, find the match in neighbordb and then apply the tora
definition.

Match Pattern That Excludes a String

Objective

I want my node to be dynamically provisioned and I’d like to match certain
neighbors as long as the neighbor hostname excludes a certain string.

Solution

Using the excludes() function allows you to match the inverse of the
includes() function.

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:
 - name: tora for pod1
 definition: tora
 interfaces:
 - Ethernet1: includes('dc1-pod1'):Ethernet1
 - any: excludes('spine'):Ethernet50

This pattern says that the node being provisioned must have a connection between
its Ethernet1 and any hostname that includes dc1-pod1 Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node
executes the bootstrap script it will send the ZTPServer some information about
itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it
next checks neighbordb to try and find a match. The ZTPServer will analyze
the nodes LLDP neighbors, find the match in neighbordb and then apply the tora
definition.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Definitions

	Add an Action to a Definition

	Add Global Variables to Definition

	Add Custom Log Statements as Action Executes

Add an Action to a Definition

Objective

I want to use one of the built-in actions in my definition file.

Solution

You can choose any of the pre-built actions to include in your definition.

Note

Learn more about Actions [http://ztpserver.readthedocs.org/en/master/config.html#actions].

In this example we’ll copy a python script to the node and set its permissions.

actions:
 -
 action: copy_file
 always_execute: true
 attributes:
 dst_url: /mnt/flash/
 mode: 777
 overwrite: if-missing
 src_url: files/automate/bgpautoinf.py
 name: "automate BGP peer interface config"

Explanation

Here we add the copy_file action to our definition. The attributes listed in
the action will be passed to the node so that it is able to retrieve the script
from [SERVER_URL]/files/automate/bgpautoinf.py. Since we are using overwrite: if-missing,
the action will only copy the file to the node if it does not already exist.

Note

For more Action recipes see the Actions section.

Add Global Variables to Definition

Objective

I want to use a variable throughout my definition without having to define it
more than once.

Solution

You can accomplish this by adding an attributes section at the root level of
your definition file.

Note

Learn more about Actions [http://ztpserver.readthedocs.org/en/master/config.html#actions].

In this example, we have two different actions that reference the same $mode
and $dst variables.

actions:
 -
 action: copy_file
 always_execute: true
 attributes:
 dst_url: $dst
 mode: $mode
 overwrite: if-missing
 src_url: files/automate/bgpautoinf.py
 name: "Copy automate BGP script to node"
 -
 action: copy_file
 always_execute: true
 attributes:
 dst_url: $dst
 mode: $mode
 overwrite: if-missing
 src_url: files/automate/superautomate.py
 name: "Copy awesome script to my node"
 -
 action: add_config
 attributes:
 url: files/templates/ma1.template
 variables:
 ipaddress: $ip
 name: "configure ma1"
 -
 action: add_config
 attributes:
 url: files/templates/xmpp.template
 variables: $variables
 name: "configure ma1"

attributes:
 dst: /mnt/flash
 mode: 777
 ip: 192.168.0.50
 variables:
 domain: im.example.com
 user: myXmmpUser
 passwd: secret
 room: myAwesomeRoom

Explanation

This example shows how to use global variables within the definition. It’s
important to see the difference between using variables to define attributes
of the action versus variables that get used within the template in an
add_config action. See how the ipaddress variable is nested within
a variables key? Also, you can create a list in the attributes section
and pass the entire list into the action as shown in the XMPP config action.

Note

For more Action recipes see the Actions section.

Add Custom Log Statements as Action Executes

Objective

I want to send specific messages to my syslog and/or XMPP servers while an action
is executing. Especially, if something goes wrong, I’d like to add a helpful message
so the engineer knows who to contact.

Solution

The node being provisioned will send predefined logs to the endpoints defined in
[data_root]/bootstrap/bootstrap.conf, but you can send additional client-side
logs by adding a few attributes to your definition.

Let’s add some specific status messages to the definition below.

Note

This could be a static node definition in [data_root]/nodes/<SYSTEM_ID>/definition
or a global definition in [data_root]/definitions/definition_name.

actions:
 -
 action: copy_file
 always_execute: true
 attributes:
 dst_url: $dst
 mode: $mode
 overwrite: if-missing
 src_url: files/automate/bgpautoinf.py
 name: "Copy automate BGP script to node"
 onstart: "Starting the action to copy the BGP script"
 onsuccess: "SUCCESS: The BGP script has been copied"
 onfailure: "ERROR: Failed to copy script - contact admin@example.com"
attributes:
 dst: /mnt/flash
 mode: 777

Explanation

Here we make use of three specific keywords: onstart, onsuccess and
onfailure. By adding these keys to your definition, the node will generate
this message while it is being provisioned. As mentioned above, this message will
be sent to all of the logging destinations defined in [data_root]/bootstrap/bootstrap.conf.

Note

For help defining an XMPP or syslog endpoint, see Client-Side Logging

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Actions

	Add a Configuration Block to a Node

	Add Configuration to a Node Using Variables

	Replace Entire Startup-Config During Provisioning

	Copy a File to a Node During Provisioning

	Install a Specific EOS Image

	Install an Extension

Add a Configuration Block to a Node

Objective

In order to keep your provisioning data modular, you may want to break apart
configuration blocks into small code blocks. You can use the add_config
action to place a block on code on the node.

Solution

Example 1: Add a static block of configuration to your node

First, create a template file with the desired configuration.

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Make sure you have a directory for templates
admin@ztpserver:~# mkdir -p files/templates

Create a static config block
admin@ztpserver:~# vi files/templates/east-dns.template

!
ip name-server vrf default east.ns1.example.com
!

Then add the add_config action to your definition:

actions:
 -
 action: add_config
 attributes:
 url: files/templates/east-dns.template
 name: "Add East DNS Server"

Explanation

Here we defined a simple action that adds configuration to the node during
provisioning. The url in this case is relative to [data_root]/url. It’s
important to realize that the ZTPServer does not compile these configuration
blocks into a startup-config and then send a single file to the node. Rather,
the node executes each action independently, building the configuration in a
module fashion. If you are interested in performing variable substitution in your
templates to make them more flexible, see the next recipe.

Note

Please see the add_config [http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.add_config]
documentation for more details.

Add Configuration to a Node Using Variables

Objective

I want to keep my templates flexible by using variables. In some cases, I’d like
to assign a variable from a resource pool.

Solution

First, create a template file with the desired configuration. In this recipe let’s
configure interface Management1.

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Make sure you have a directory for templates
admin@ztpserver:~# mkdir -p files/templates

Create a static config block
admin@ztpserver:~# vi files/templates/ma1.template

Paste this config into the template:

!
interface Management1
 ip address $ipaddress
 no shutdown
!

Then add the add_config action to your definition:

actions:
 -
 action: add_config
 attributes:
 url: files/templates/ma1.template
 variables:
 ipaddress: allocate("mgmt_subnet")
 name: "Configure Ma1"

Then create a resource pool called mgmt_subnet:

Create a resource pool
admin@ztpserver:~# vi resources/mgmt_subnet

Paste the following into mgmt_subnet:

192.0.2.10/24: null
192.0.2.11/24: null
192.0.2.12/24: null
192.0.2.13/24: null

Explanation

This recipe ties a few different concepts together. From a high-level, the definition
contains an action, add_config, which references a configuration block, ma1.template.
Further, we use a variable, $ipaddress in the template file so that the template
can be used for all nodes being provisioned. The final piece is the use of the
allocate() function, which dynamically assigns a key from the associated
resource pool.

In practice, when a node requests its definition the ZTPServer will execute the
allocate("mgmt_subnet") function and assign a key from the pool.
The ZTPServer will then write the SYSTEM_ID as the value, overwriting null.

If you wanted to use the assigned value elsewhere in the definition, simply call
allocate(mgmt_subnet) and the function will not assign a new value, rather it
will return the key already assigned.

The result would look like:

192.0.2.10/24: <SYSTEM_ID>
192.0.2.11/24: null
192.0.2.12/24: null
192.0.2.13/24: null

Note

Please see the add_config [http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.add_config]
documentation for more details.

Replace Entire Startup-Config During Provisioning

Objective

I have a complete startup-config that I want to apply during provisioning. I want
to completely replace what’s already on the node.

Solution

First, create the startup-config with the desired configuration.

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Make sure you have a directory for templates
admin@ztpserver:~# mkdir -p files/configs

Create a startup-config
admin@ztpserver:~# vi files/configs/tor-startup-config

!
hostname test-node-1
ip name-server vrf default <DNS-SERVER-IP>
!
ntp server <NTP-SERVER-IP>
!
username admin privilege 15 role network-admin secret admin
!
interface Management1
 ip address <MGMT-IP-ADDRESS>/<SUBNET>
!
ip access-list open
 10 permit ip any any
!
ip route 0.0.0.0/0 <DEFAULT-GW>
!
ip routing
!
management api http-commands
 no shutdown
!
banner login
Welcome to $(hostname)!
This switch has been provisioned using the ZTPServer from Arista Networks
Docs: http://ztpserver.readthedocs.org/
Source Code: https://github.com/arista-eosplus/ztpserver
EOF
!
end

Then add the replace_config action to your definition:

actions:
 -
 action: replace_config
 attributes:
 url: files/configs/tor-startup-config
 name: "Replace entire startup-config"

Explanation

This action simply replaces the startup-config which lives in /mnt/flash/startup-config.

Note

Please see the replace_config [http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.replace_config]
documentation for more details.

Copy a File to a Node During Provisioning

Objective

I want to copy a file to the node during the provisioning process and then
set its permissions.

Solution

In this example we’ll copy a python script to the node and set its permissions.

actions:
 -
 action: copy_file
 always_execute: true
 attributes:
 dst_url: /mnt/flash/
 mode: 777
 overwrite: if-missing
 src_url: files/automate/bgpautoinf.py
 name: "automate BGP peer interface config"

Explanation

Here we add the copy_file action to our definition. The attributes listed in
the action will be passed to the node so that it is able to retrieve the script
from [SERVER_URL]/files/automate/bgpautoinf.py. Since we are using overwrite: if-missing,
the action will only copy the file to the node if it does not already exist.

You could define the url as any destination the node can reach during provisioning - the
file does not need to exist on the ZTPServer.

Note

Please see the copy_file [http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.copy_file]
documentation for more details.

Install a Specific EOS Image

Objective

I want a specific (v)EOS version to be automatically installed when I provision
my node.

Note

This assumes that you’ve already downloaded the desired (v)EOS image
from Arista [https://www.arista.com/en/support/software-download].

Solution

Let’s create a place on the ZTPServer to host some SWIs:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create an images directory
admin@ztpserver:~# mkdir -p files/images

SCP your SWI into the images directory, name it whatever you like
admin@ztpserver:~# scp admin@otherhost:/tmp/vEOS.swi files/images/vEOS_4.14.5F.swi

Now let’s create a definition that performs the install_image action:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create a definition file
admin@ztpserver:~# vi definitions/tor-definition

Add the following lines to your definition, changing values where needed:

name: static node definition
actions:
 -
 action: install_image
 always_execute: true
 attributes:
 url: files/images/vEOS_4.14.5F.swi
 version: 4.14.5F
 name: "Install 4.14.5F"

Note

The definition uses YAML syntax

Explanation

In this case we are hosting the SWI on the ZTPServer, so we just define the url in relation
to the data_root. We could change the url to point to another server
altogether - the choice is yours. The benefit of hosting the file on the
ZTPServer is that we perform an extra checksum step to validate the integrity of
the file.

In practice, the node requests its definition during the provisioning process. It
sees that it’s supposed to perform the install_image action, so it
requests the install_image python script. It then performs an HTTP GET for
the url. Once it has these locally, it executes the
install_image [http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.install_image]
script.

Install an Extension

Objective

I want to install an extension on my node automatically.

Solution

Let’s create a place on the ZTPServer to host the RPMs:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create an images directory
admin@ztpserver:~# mkdir -p files/rpms

SCP your SWI into the images directory, name it whatever you like
admin@ztpserver:~# scp admin@otherhost:/tmp/myRPM.rpm files/rpms/myRPM.rpm

Now let’s create a definition that performs the install_extension action:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create a definition file
admin@ztpserver:~# vi definitions/tor-definition

Add the following lines to your definition, changing values where needed:

name: static node definition
actions:
 -
 action: install_extension
 always_execute: true
 attributes:
 url: files/rpms/myRPM.rpm
 name: "Install myRPM extension"

Note

The definition uses YAML syntax

Explanation

The install_extension will copy the RPM defined in the url parameter and
copy it to the default extension directory, /mnt/flash/.extensions

Note

Please see the install_extension [http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.install_extension]
documentation for more details.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Resource Pools

	Add a New Resource Pool

	Clearing a Resource Pool

Add a New Resource Pool

Objective

I’d like to add a new resource pool of IP addresses so that I can assign a new
IP to each node that gets provisioned.

Note

Resource Pools are simple key: value YAML files.

Solution

Create the resource pool

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create a resource pool file
admin@ztpserver:~# vi resources/mgmt_ip

192.168.0.2/24: null
192.168.0.3/24: null
192.168.0.4/24: null
192.168.0.5/24: null
192.168.0.6/24: null
192.168.0.7/24: null
192.168.0.8/24: null
192.168.0.9/24: null
192.168.0.10/24: null

Explanation

Resource Pool files are just key: value files. The default value for each
key should be null. This makes the key available for assignment. If you would
like to pre-assign a specific node with a particular key, then just put the
node’s node_id in place of null. Resource Pools are analyzed when the
allocate(pool_name) function is run from a definition. Note that you can
also use the allocate() function to perform a lookup when a node has
already been assigned a key.

Clearing a Resource Pool

Objective

I’d like to reset the values of a resource pool so that all values return to
null.

Solution

You can use the ztps command line to perform this action.

admin@ztpserver:~# ztps --clear-resources

Note

This will clear ALL resource pools

Explanation

Clearing all resource pools can be done via the command line on the ZTPServer.
The command will analyze data_root/resources and any file that exists in
that directory that resembles a ZTPServer resource pool will be cleared.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Advanced

	Configuration Management and ZTR

Configuration Management and ZTR

Objective

I want to automatically push the startup-config from each node to the
corresponding /nodes/ folder whenever changes are made on the node.

Solution

The ZTPServer accepts HTTP PUT requests at nodes/<node_id>/startup-config.
Therefore, we can configure and event-handler on the node during provisioning
which will perform this PUT anytime the startup-config is saved.

1. Create event-handler template

Choose the option that best fits your deployment. The variations are
Serial Number or System Mac Address, and Default VRF or Non-Default VRF.

Copy and paste the option text into a new template in:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Make sure you have a directory for templates
admin@ztpserver:~# mkdir -p files/templates

Create a static config block
admin@ztpserver:~# vi files/templates/config-push.template

Note

Notice the $ztpserver, $port and $vrf_name variables.
You can hardcode these in the template or abstract these to the
definition or attributes file (as shown in the next recipe).

Option 1: Using SystemMac and Default VRF

event-handler configpush
 trigger on-startup-config
 action bash export SYSMAC=`FastCli -p 15 -c 'show ver | grep MAC | cut -d" " -f 5' | sed 's/[.]*//g'`; curl http://$ztpserver:$port/nodes/$SYSMAC/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Option 2: Using SystemMac and Non-Default VRF

event-handler configpush
 trigger on-startup-config
 ! For non-default VRF, use:
 action bash export SYSMAC=`FastCli -p 15 -c 'show ver | grep MAC | cut -d" " -f 5' | sed 's/[.]*//g'`; sudo ip netns exec ns-$vrf_name curl http://$ztpserver:$port/nodes/$SYSMAC/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Option 3: Using Serial Number and Default VRF

event-handler configpush
 trigger on-startup-config
 ! For serial number, default VRF:
 action bash export SERIAL=`FastCli -p 15 -c 'show ver' | grep Serial | tr -s ' ' | cut -d ' ' -f 3 | tr -d '\r'`; curl http://$ztpserver:$port/nodes/$SERIAL/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Option 4: Using Serial Number and Non-Default VRF

event-handler configpush
 trigger on-startup-config
 ! For serial number, non-default VRF:
 action bash export SERIAL=`FastCli -p 15 -c 'show ver' | grep Serial | tr -s ' ' | cut -d ' ' -f 3 | tr -d '\r'`; sudo ip netns exec ns-$vrf_name curl http://$ztpserver:$port/nodes/$SERIAL/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Explanation

(add explanation here)

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

Run ZTPServer as a VM on EOS

Introduction

Bootstrapping network devices, much like bootstrapping servers, requires a server in place to handle that function. Often, it is cumbersome to have that server ready before the network is up and running. Therefore, it will be very convenient to have a server up and running, along with the first node in the network fabric, to handle bootstrapping for the rest of the infrastructure.

Arista EOS provides the capability to run VMs on top of EOS, therefore making the above scenario possible. The following set of recipes will help you perform the necessary steps to streamline your data center network bootstrapping process:

	You can have everything prepared and stored on a USB key.

	Plug in the USB key to the first SPINE switch in the data center.

	The rest of the data center fabric will be bootstrapped automatically!

There are 3 different deployment topologies, and your network design should fall into one of them. Each topology requires slightly different recipes, and they are explained in the following sections.

	L2L3WM : a L2 MLAG or L3 ECMP fabric with an out-of-band management network (switches managed via the management port)

	L2WOM : a L2 MLAG fabric without an out-of-band management network (switches managed in-band via SVI)

	L3WOM : a L3 ECMP fabric without an out-of-band management network (switches managed in-band via loopback)

	ZTPServer VM on EOS in a L2L3WM

	ZTPServer VM on EOS in a L2WOM

	ZTPServer VM on EOS in a L3WOM

Deployment Steps

Objective

I want to use a single USB key to bootstrap my entire data center fabric.

Solution

Follow the steps below:

	Obtain an USB key that’s at least 4GB and format it with either MS-DOS or FAT file system

	Copy all the files listed in the “Files Needed” section onto the USB key

	Plug the USB key into the USB port on the first SPINE switch

	Sit back and watch your data center network fabric bring itself up!

Note

All files and directories present on the USB flash drive will be copied to the switch.
It is recommended that the USB drive contains only the three files listed above.

Explanation

The USB key method leverages the Arista Password Recovery mechanism. When the fullrecover and boot-config file is present on the USB key, the system will check the timestamp on the boot-config file.If the timestamp is different, all files on the USB key will be copied to the flash on the switch, and the switch will be rebooted and come up with the startup-config and the EOS.swi included on the USB key.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

 	Run ZTPServer as a VM on EOS

ZTPServer VM on EOS in a L2L3WM

Files Needed

	ztps.vmdk : the VM disk image for the ZTPServer VM

	startup-config: a text file (with no extension)

	ztps.sh : a bash shell script

	ztps.xml : an xml file

	fullrecover : an empty text file (with no extension)

	boot-config : a text file (with no extension); contains a single line: SWI=flash:EOS.swi

	EOS.swi : download an EOS image and rename it to EOS.swi

ztps.vmdk

Objective

I want to create a ZTPServer vmdk file to use on EOS.

Solution

	The ZTPServer vmdk file can be created using either methods below:

	
	Automatically Create a Full-Featured ZTPServer: https://github.com/arista-eosplus/packer-ZTPServer

	Create your own VM and install ZTPServer as intructed in the “Installation” section

Explanation

The turnkey solution detailed on the github will create a full featured ztps.vmdk by executing a single command. The vmdk created using this method comes with certain parameters pre-defined (i.e. domain-name, root user credential, IP address, etc). If desired, you can change these parameters by logging into the VM after it’s created.

The second method requires more manual work compare to the first method, but may be more suitable if you already have a VM build to your needs and simply want to add ZTPServer to it.

startup-config

Objective

I need to prepare a startup-config for the first SPINE switch to enable ZTPServer.

Solution

Essential parts of the configuration:

	event-handler ztps : used to start the shell script ztps.sh

	virtual-machine ztps : used to start the ZTPServer VM on EOS

interface Management1
 ip address 192.168.1.10/24

event-handler ztps
 trigger on-boot
 action bash /mnt/flash/ztps.sh &
 delay 300

virtual-machine ztps
 config-file flash:/ztps.xml
 enable

Explanation

The event-handler ztps is triggered on-boot to kickstart the shell script ztps.sh. There is a delay of 300 seconds before the script will be executed, to make sure all the necessary systems are in place before we run the script. For details of the script please see the ztps.sh section.

External systems will connect to the VM via the management network. The host switch will connect to the VM via the Linux bridge (See ztps.sh). Therefore in this scenario we will need to have 2 interfaces on the ZTPServer VM.

For details of the shell script ztps.sh please refer to the corresponding sectio below.

ztps.sh

Objective

I want to create a shell script to set up all the necessary environment for ZTPServer when the switch boots up.

Solution

#!/bin/bash
This script is used with the event-handler so that on-boot, we will create linux bridge,
#enable ip.forwarding, restart the ZTPS VM, and start DHCPD
logger -t "ZTPS" -p local0.info "Starting the process for ZTPS VM deployment"

Create Linux Bridge
sudo brctl addbr br0
sudo ifconfig br0 up
sudo ifconfig br0 172.16.130.254/24

logger -t "ZTPS" -p local0.info "Linux Bridge created"

#Now lets restart the ZTPS VM
sudo echo -e "enable\nconfigure terminal\nvirtual-machine ztps restart\n" | FastCli -M -e -p 15

logger -t "ZTPS" -p local0.info "ZTPS VM restarted"

Explanation

In order to enable connectivity to the VM locally (from the host switch), a Linux bridge interface needs to be created and assigned an IP in the same subnet as one of the interfaces on the VM.

The ZTPServer VM needs to be restarted after the switch boots up.

Note

The ZTPServer VM needs to have its default gateway pointed to the default gateway of the management network.

ztps.xml

Objective

I want to prepare a KVM custom xml file to enable a VM on EOS.

Solution

Key parts of the xml file to pay attention to:

	<domain type='kvm' id='1'> : id needs to be unique (if more than 1 VM)

	<driver name='qemu' type='vmdk'/> : make sure the type is vmdk

	<source file='/mnt/usb1/ztps.vmdk'/>: make sure the path is correct

	Interface definition section :
	MAC address in the xml need to match the MAC address of the interfaces on the ZTPServer VM.

	The first interface type is direct and is mapped to ma1. This is the interface that will be used for other switches to reach the VM.

	The second interface type is bridge and is using Linux bridge. This interface is solely used for local host switch to VM connectivity.

<domain type='kvm' id='1'>
 <name>ztps</name>
 <memory>1048576</memory>
 <currentMemory>1048576</currentMemory>
 <vcpu>1</vcpu>
 <os>
 <type arch='x86_64' machine='pc-i440fx-1.4'>hvm</type>
 <boot dev='hd'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 <pae/>
 </features>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/bin/qemu-system-x86_64</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='vmdk'/>
 <source file='/mnt/usb1/ztps.vmdk'/>
 <target dev='hda' bus='ide'/>
 <alias name='ide0-0-0'/>
 <address type='drive' controller='0' bus='0' unit='0'/>
 </disk>
 <controller type='ide' index='0'>
 <alias name='ide0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>
 </controller>
 <interface type='direct'>
 <mac address='08:00:27:bc:d7:38'/>
 <source dev='ma1' mode='bridge'/>
 <target dev='macvtap0'/>
 <model type='e1000'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
 </interface>
 <interface type='bridge'>
 <mac address='08:00:27:85:0c:f8'/>
 <source bridge='br0'/>
 <target dev='macvtap1'/>
 <model type='e1000'/>
 <alias name='net1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
 </interface>
 <serial type='pty'>
 <source path='/dev/pts/5'/>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 <console type='pty' tty='/dev/pts/5'>
 <source path='/dev/pts/5'/>
 <target type='serial' port='0'/>
 <alias name='serial0'/>
 </console>
 <input type='tablet' bus='usb'>
 <alias name='input0'/>
 </input>
 <input type='mouse' bus='ps2'/>
 <graphics type='vnc' port='5900' autoport='no' listen='0.0.0.0'/>
 <video>
 <model type='vga' vram='8192' heads='1'/>
 <alias name='video0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
 </video>
 <memballoon model='virtio'>
 <alias name='balloon0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
 </memballoon>
 </devices>
</domain>

Explanation

The interface definition section defines how the interface(s) of the VM should be initialized. Since the vmdk already has interfaces defined/initialized, we have to use the same MAC address in the KVM definition file.

In the first interface definition we use interface type='direct'. In this configuration we map the first interface of the VM to the ma1 interface directly, enabling connectivity to the VM from external of the host switch. However, interface type='direct' does not allow for host switch to VM connectivity, therefore we need to define a second interface with interface type='bridge' and map that to the Linux bridge for this puspose.

The reason we could not just bridge ma1 with the Linux bridge (and therefore just use one interface to enable both local and external connectivity) is because when we enslave an interface to br0, that interface cannot have an IP address on it, otherwise the connectivity would break.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

 	Run ZTPServer as a VM on EOS

ZTPServer VM on EOS in a L2WOM

Files Needed

	ztps.vmdk : the VM disk image for the ZTPServer VM

	startup-config: a text file (with no extension)

	ztps.sh : a bash shell script

	ztps.xml : an xml file

	fullrecover : an empty text file (with no extension)

	boot-config : a text file (with no extension); contains a single line: SWI=flash:EOS.swi

	EOS.swi : download an EOS image and rename it to EOS.swi

ztps.vmdk

Objective

I want to create a ZTPServer vmdk file to use on EOS.

Solution

	The ZTPServer vmdk file can be created using either methods below:

	
	Automatically Create a Full-Featured ZTPServer: https://github.com/arista-eosplus/packer-ZTPServer

	Create your own VM and install ZTPServer as intructed in the “Installation” section

Explanation

The turnkey solution detailed on the github will create a full featured ztps.vmdk by executing a single command. The vmdk created using this method comes with certain parameters pre-defined (i.e. domain-name, root user credential, IP address, etc). If desired, you can change these parameters by logging into the VM after it’s created.

The second method requires more manual work compare to the first method, but may be more suitable if you already have a VM build to your needs and simply want to add ZTPServer to it.

startup-config

Objective

I need to prepare a startup-config for the first SPINE switch to enable ZTPServer.

Solution

Essential parts of the configuration:

	event-handler ztps : used to start the shell script ztps.sh

	virtual-machine ztps : used to start the ZTPServer VM on EOS

interface Vlan1
 ip address 192.168.1.10/24

event-handler ztps
 trigger on-boot
 action bash /mnt/flash/ztps.sh &
 delay 300

virtual-machine ztps
 config-file flash:/ztps.xml
 enable

Explanation

The event-handler ztps is triggered on-boot to kickstart the shell script ztps.sh. There is a delay of 300 seconds before the script will be executed, to make sure all the necessary systems are in place before we run the script. For details of the script please see the ztps.sh section.

External systems will connect to the VM via Vlan1 (other VLANs can be used as well). The host switch will connect to the VM via the Linux bridge (See ztps.sh). Therefore in this scenario we will need to have 2 interfaces on the ZTPServer VM.

For details of the shell script ztps.sh please refer to the corresponding section below.

ztps.sh

Objective

I want to create a shell script to set up all the necessary environment for ZTPServer when the switch boots up.

Solution

#!/bin/bash
This script is used with the event-handler so that on-boot, we will create linux bridge,
#enable ip.forwarding, restart the ZTPS VM, and start DHCPD
logger -t "ZTPS" -p local0.info "Starting the process for ZTPS VM deployment"

Create Linux Bridge
sudo brctl addbr br0
sudo ifconfig br0 up
sudo ifconfig br0 172.16.130.254/24

logger -t "ZTPS" -p local0.info "Linux Bridge created"

#Now lets restart the ZTPS VM
sudo echo -e "enable\nconfigure terminal\nvirtual-machine ztps restart\n" | FastCli -M -e -p 15

logger -t "ZTPS" -p local0.info "ZTPS VM restarted"

Explanation

In order to enable connectivity to the VM locally (from the host switch), a Linux bridge interface needs to be created and assigned an IP in the same subnet as one of the interfaces on the VM.

The ZTPServer VM needs to be restarted after the switch boots up.

Note

The ZTPServer VM needs to have its default gateway pointed to the default gateway of Vlan1 (or your choice of VLAN).

ztps.xml

Objective

I want to prepare a KVM custom xml file to enable a VM on EOS.

Solution

Key parts of the xml file to pay attention to:

	<domain type='kvm' id='1'> : id needs to be unique (if more than 1 VM)

	<driver name='qemu' type='vmdk'/> : make sure the type is vmdk

	<source file='/mnt/usb1/ztps.vmdk'/>: make sure the path is correct

	Interface definition section :
	MAC address in the xml need to match the MAC address of the interfaces on the ZTPServer VM.

	The first interface type is direct and is mapped to vlan1. This is the interface that will be used for other switches to reach the VM.

	The second interface type is bridge and is using Linux bridge. This interface is solely used for local host switch to VM connectivity.

<domain type='kvm' id='1'>
 <name>ztps</name>
 <memory>1048576</memory>
 <currentMemory>1048576</currentMemory>
 <vcpu>1</vcpu>
 <os>
 <type arch='x86_64' machine='pc-i440fx-1.4'>hvm</type>
 <boot dev='hd'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 <pae/>
 </features>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/bin/qemu-system-x86_64</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='vmdk'/>
 <source file='/mnt/usb1/ztps.vmdk'/>
 <target dev='hda' bus='ide'/>
 <alias name='ide0-0-0'/>
 <address type='drive' controller='0' bus='0' unit='0'/>
 </disk>
 <controller type='ide' index='0'>
 <alias name='ide0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>
 </controller>
 <interface type='direct'>
 <mac address='08:00:27:bc:d7:38'/>
 <source dev='vlan1' mode='bridge'/>
 <target dev='macvtap0'/>
 <model type='e1000'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
 </interface>
 <interface type='bridge'>
 <mac address='08:00:27:85:0c:f8'/>
 <source bridge='br0'/>
 <target dev='macvtap1'/>
 <model type='e1000'/>
 <alias name='net1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
 </interface>
 <serial type='pty'>
 <source path='/dev/pts/5'/>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 <console type='pty' tty='/dev/pts/5'>
 <source path='/dev/pts/5'/>
 <target type='serial' port='0'/>
 <alias name='serial0'/>
 </console>
 <input type='tablet' bus='usb'>
 <alias name='input0'/>
 </input>
 <input type='mouse' bus='ps2'/>
 <graphics type='vnc' port='5900' autoport='no' listen='0.0.0.0'/>
 <video>
 <model type='vga' vram='8192' heads='1'/>
 <alias name='video0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
 </video>
 <memballoon model='virtio'>
 <alias name='balloon0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
 </memballoon>
 </devices>
</domain>

Explanation

The interface definition section defines how the interface(s) of the VM should be initialized. Since the vmdk already has interfaces defined/initialized, we have to use the same MAC address in the KVM definition file.

In the first interface definition we use interface type='direct'. In this configuration we map the first interface of the VM to the vlan1 interface directly, enabling connectivity to the VM from external of the host switch. However, interface type='direct' does not allow for host switch to VM connectivity, therefore we need to define a second interface with interface type='bridge' and map that to the Linux bridge for this puspose.

The reason we could not just bridge Vlan1 with the Linux bridge (and therefore just use one interface to enable both local and external connectivity) is because when we enslave an interface to br0, that interface cannot have an IP address on it, otherwise the connectivity would break.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	ZTPServer Cookbook

 	Run ZTPServer as a VM on EOS

ZTPServer VM on EOS in a L3WOM

Files Needed

	ztps.vmdk : the VM disk image for the ZTPServer VM

	startup-config: a text file (with no extension)

	ztps.sh : a bash shell script

	ztps.xml : an xml file

	dhcpd.conf : a text file for Linux dhcpd configuration

	dhcpd.rpm : a DHCP server RPM to be installed on EOS

	ztps_daemon : a python script

	fullrecover : an empty text file (with no extension)

	boot-config : a text file (with no extension); contains a single line: SWI=flash:EOS.swi

	boot-extention: a text file (with no extention); contains a single like: dhcpd.rpm

	EOS.swi : download an EOS image and rename it to EOS.swi

ztps.vmdk

Objective

I want to create a ZTPServer vmdk file to use on EOS.

Solution

	The ZTPServer vmdk file can be created using either methods below:

	
	Automatically Create a Full-Featured ZTPServer: https://github.com/arista-eosplus/packer-ZTPServer

	Create your own VM and install ZTPServer as intructed in the “Installation” section

Explanation

The turnkey solution detailed on the github will create a full featured ztps.vmdk by executing a single command. The vmdk created using this method comes with certain parameters pre-defined (i.e. domain-name, root user credential, IP address, etc). If desired, you can change these parameters by logging into the VM after it’s created.

The second method requires more manual work compare to the first method, but may be more suitable if you already have a VM build to your needs and simply want to add ZTPServer to it.

startup-config

Objective

I need to prepare a startup-config for the first SPINE switch to enable ZTPServer.

Solution

Essential parts of the configuration:

	interface Loopback2 : need a loopback interface on the same subnet as the VM

	daemon ztps : used to run the ztps.daemon python script in the background

	event-handler ztps : used to start the shell script ztps.sh

	virtual-machine ztps : used to start the ZTPServer VM on EOS

	management api http-commands: need to enable eAPI for daemon ztps to function

interface Loopback2
 ip address 172.16.130.253/24

daemon ztps
 command /mnt/flash/ztps_daemon &

event-handler ztps
 trigger on-boot
 action bash /mnt/flash/ztps.sh &
 delay 300

virtual-machine ztps
 config-file flash:/ztps.xml
 enable

management api http-commands
 protocol http localhost
 no shutdown

Explanation

The event-handler ztps is triggered on-boot to kickstart the shell script ztps.sh. There is a delay of 300 seconds before the script will be executed, to make sure all the necessary systems are in place before we run the script. For details of the script please see the ztps.sh section.

The management api http-commands section enables Arista eAPI on the host swithc; eAPI is leveraged by the ztps_daemon. eAPI can be accessed remotely via http or https, or it can be accessed locally via http, or by binding to a UNIX socket (only available on 4.14.5F onward). Since the daemon is a script that runs locally, we can either enalbe eAPI on the localhost via http (if you are running 4.14.5F or later), or we can just enable eAPI over https (this will require authentication).

The daemon ztps section runs a python script in the back ground as a daemon to restart DHCPD whenever an interface comes up.

For details of the shell script ztps.sh and the python script ztps_daemon please refer to the corresponding sectio below.

Note

The loopback interface is only needed if you plan to bootstrap a L3 ECMP fabric without a management network. In this scenario, the loopback address needs to be advertised in the ECMP routing protocol to enable connectivity for the downstream deviecs in the fabric.

ztps.sh

Objective

I want to create a shell script to set up all the necessary environment for ZTPServer when the switch boots up.

Solution

#!/bin/bash
This script is used with the event-handler so that on-boot, we will create linux bridge,
#enable ip.forwarding, restart the ZTPS VM, and start DHCPD
logger -t "ZTPS" -p local0.info "Starting the process for ZTPS VM deployment"

Create Linux Bridge
sudo brctl addbr br0
sudo ifconfig br0 up
sudo ifconfig br0 172.16.130.254/24

logger -t "ZTPS" -p local0.info "Linux Bridge created"

Enable ip.forwarding
sudo sysctl net.ipv4.conf.all.forwarding=1
sudo sysctl net.ipv4.ip_forward=1

logger -t "ZTPS" -p local0.info "ip.forwarding enabled"

Move the DHCP server RPM to the appropriate folder on EOS for installation
Move the dhcpd.conf file to the appropriate folder
sudo cp /mnt/flash/dhcp-4.2.0-23.P2.fc14.i686.rpm /mnt/flash/.extensions/dhcpd.rpm
sudo cp /mnt/flash/dhcpd.conf /etc/dhcp/
sudo /usr/sbin/dhcpd
sleep 5

#make sure dhcpd is running before we continue
ps aux | grep "dhcpd" | grep -v grep
if [$? -eq 0]
then
{
logger -t "ZTPS" -p local0.info "DHCPD is running. Restart ZTPS VM."

#Now lets restart the ZTPS VM
sudo echo -e "enable\nconfigure terminal\nvirtual-machine ztps restart\n" | FastCli -M -e -p 15

logger -t "ZTPS" -p local0.info "ZTPS VM restarted"

exit 0
}
else
 logger -t "ZTPS" -p local0.info "Looks like DHCPD didn't start. Lets sleep for a few seconds and try again"
 sleep 10
fi

Explanation

In order to enable connectivity to the VM from both remotely and locally (from the host switch), a Linux bridge interface needs to be created and assigned an IP in the same subnet as the VM; Linux ip.forwarding also needs to be enabled in the kernel for the packets to be routed to the VM.

EOS does not come with dhcpd preinstalled, there a DHCP-Server RPM needs to be downloaded, installed and started. Dowdload the RPM from here [https://docs.google.com/a/arista.com/document/d/1fmhvousmZYr8Sidiv9rBf_PZDT-65QX0um215s_9K0c/edit#] and rename it to dhcpd.rpm. The RPM needs to be moved to the /mnt/flash/.extension location, and a boot-extension file, with the RPM specified, needs to be present in /mnt/flash in order for the RPM to be installed persistently after a reboot.

The ZTPServer VM needs to be restarted after the switch boots up.

Note

The ZTPServer VM needs to have its default gateway pointed to the br0 interface IP address.

ztps.xml

Objective

I want to prepare a KVM custom xml file to enable a VM on EOS.

Solution

Key parts of the xml file to pay attention to:

	<domain type='kvm' id='1'> : in case multiple VMs are running on the system, make sure the configured ID is unique

	<driver name='qemu' type='vmdk'/> : make sure the type is vmdk

	<source file='/mnt/usb1/ztps.vmdk'/>: make sure the path is correct

	<mac address='08:00:27:85:0c:f8'/> : make sure this MAC matches the MAC address of the interface on the ZTPServer VM that you intend to use for connectivity

	<target dev='vnet0'/> : make sure the target device type is vnet0

<domain type='kvm' id='1'>
 <name>ztps</name>
 <memory>1048576</memory>
 <currentMemory>1048576</currentMemory>
 <vcpu>1</vcpu>
 <os>
 <type arch='x86_64' machine='pc-i440fx-1.4'>hvm</type>
 <boot dev='hd'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 <pae/>
 </features>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/bin/qemu-system-x86_64</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='vmdk'/>
 <source file='/mnt/usb1/ztps.vmdk'/>
 <target dev='hda' bus='ide'/>
 <alias name='ide0-0-0'/>
 <address type='drive' controller='0' bus='0' unit='0'/>
 </disk>
 <controller type='ide' index='0'>
 <alias name='ide0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>
 </controller>
 <interface type='bridge'>
 <mac address='08:00:27:85:0c:f8'/>
 <source bridge='br0'/>
 <target dev='vnet0'/>
 <model type='e1000'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
 </interface>
 <serial type='pty'>
 <source path='/dev/pts/5'/>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 <console type='pty' tty='/dev/pts/5'>
 <source path='/dev/pts/5'/>
 <target type='serial' port='0'/>
 <alias name='serial0'/>
 </console>
 <input type='tablet' bus='usb'>
 <alias name='input0'/>
 </input>
 <input type='mouse' bus='ps2'/>
 <graphics type='vnc' port='5900' autoport='no' listen='0.0.0.0'/>
 <video>
 <model type='vga' vram='8192' heads='1'/>
 <alias name='video0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
 </video>
 <memballoon model='virtio'>
 <alias name='balloon0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
 </memballoon>
 </devices>
</domain>

Explanation

The interface definition section defines how the interface(s) of the VM should be initialized. Since the vmdk already has interfaces defined/initialized, we have to use the same MAC address in the KVM definition file.

The target device type should be vnet0 to enable connectivity to the VM from both remotely and locally from the host switch. Another choice here is the macvtap device type but this type prohibits connectivity for any locally routed packets (i.e. when the routing action to the VM takes place on the host switch).

dhcpd.conf

Objective

I want to prepare a dhcpd.conf file for running DHCPD on EOS.

Solution

class "ARISTA" {
 match if substring(option vendor-class-identifier, 0, 6) = "Arista";
 option bootfile-name "http://172.16.130.10:8080/bootstrap";
}

Example
subnet 10.1.1.0 netmask 255.255.255.252 {
 option routers 10.1.1.1;
 default-lease-time 86400;
 max-lease-time 86400;
 pool {
 range 10.1.1.2 10.1.1.2;
 allow members of "ARISTA";
 }
}

Explanation

The class "ARISTA" section defines a match criteria so that any subnet defition that uses this class would only allocate IPs if the requestor is an Arista device. This class also defines a bootstrap file that will be downloaded to the requestor.

Note

The IP address and TCP port number defined for the bootfile needs to match the ZTPServer VM configuration.

The subnet section provides an example to show you how it can be defined. If you are bootstrapping a L3 ECMP network without a management network, this section needs to be repeated for every p-to-p links connecting to every leaf switches.

Note

The ZTPServer VM also runs dhcpd, but in the scenario of L3 ECMP without a management network, we are unable to leverage that. This is because DHCP relay from the host switch to the VM is currently not supported in EOS.

ztps_daemon

Objective

I want to create a python script that restarts DHCPD whenever an interface comes up.

Solution

#!/usr/bin/env python

import jsonrpclib
import os
import time

#PROTO = "https"
#USERNAME = "admin"
#PASSWORD = "admin"
#HOSTNAME = "172.16.130.20"

class EapiClient(object):
 '''
 Instantiate a Eapi connection client object
 for interacting with EAPI
 '''

 def __init__(self):
 # For EOS 4.14.5F and later, you can enable locally run scripts without needing to authenticate
 # If you are running earlier versions, just uncomment next line and also the CONSTANTS above
 #switch_url = '{}://{}:{}@{}/command-api'.format(PROTO, USERNAME, PASSWORD, HOSTNAME)
 switch_url = 'http://localhost:8080/command-api'
 self.client = jsonrpclib.Server(switch_url)

 def connected_interfaces(self):
 cmd = "show interfaces status connected"
 response = self.client.runCmds(1, [cmd])[0]
 connected_intfs = response['interfaceStatuses'].keys()
 return connected_intfs

def restart_dhcpd(eapi):
 '''
 Monitor the connected interfaces.
 If there are newly connected interface(s), restart dhcpd
 '''
 connected_intfs = []

 while True:
 new_connected_intfs = eapi.connected_interfaces()
 for intf in new_connected_intfs:
 if intf not in connected_intfs:
 os.system('sudo service dhcpd restart')

 connected_intfs = new_connected_intfs
 time.sleep(10)

def main():
 eapi = EapiClient()
 restart_dhcpd(eapi)

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

Explanation

DHCPD only binds to interfaces that are UP when the process started. Since we are running DHCPD directly on the SPINE switch, there is no gaurantee that the interfaces connected to the LEAFs are up when DHCPD started. Therefore, we need to run a script/daemon in the background to continuously check the connected interface status, and if new interfaces came up, DHCPD would be restarted to bind to the newly connected interfaces.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Tips and tricks

	How do I update my local copy of ZTPServer from GitHub?
	Automatically

	Manually

	My server keeps failing to load my resource files. What’s going on?

	How do I validate the format of my config files?

	How do I debug the ZTP Server provisioning process?

	How do I disable / enable ZTP mode on a switch

	How can I test ZTPServer without having to reboot the switch every time?

	What is the recommended test environment for ZTPServer?

	How do I override the default system-mac in vEOS?

	How do I override the default serial number or system-mac in vEOS?

How do I update my local copy of ZTPServer from GitHub?

Automatically

	Go to the ZTPServer directory where you previously cloned the GitHub repository and execute:

	./utils/refresh_ztps [-b <branch>] [-f <path>]

	<branch> can be any branch name in the Git repo. Typically this will be one of:

	“master” - for the latest release version

	“vX.Y.Z-rc” - for beta testing the next X.Y.Z release-candidate

	“develop” (DEFAULT) - for the latest bleeding-edge development branch

	<path> is the base directory of the ztpserver installation.

	/usr/share/ztpserver (DEFAULT)

Manually

Remove the existing ZTPServer files:

rm -rf /usr/share/ztpserver/actions/*
rm -rf /usr/share/ztpserver/bootstrap/*
rm -rf /usr/lib/python2.7/site-packages/ztpserver*
rm -rf /bin/ztps*
rm -rf /home/ztpuser/ztpserver/ztpserver.egg-info/
rm -rf /home/ztpuser/ztpserver/build/*

Go to the ZTPServer directory where you previously cloned the GitHub repository, update it, then build and install the server:

bash-3.2$ git pull
bash-3.2$ python setup.py build
bash-3.2$ python setup.py install

My server keeps failing to load my resource files. What’s going on?

Did you know?

a:b is INVALID YAML
a: b is VALID YAML syntax

Check out YAML syntax checker [http://yamllint.com/] for more.

How do I validate the format of my config files?

To validate config files use ztps --validate:

[ztpsadmin@ztps ~]$ ztps --validate
Validating neighbordb ('/usr/share/ztpserver/neighbordb')... Ok!

Validating definitions...
Validating /usr/share/ztpserver/definitions/torb-withImageUpgrade... Ok!
Validating /usr/share/ztpserver/definitions/torb... Ok!
Validating /usr/share/ztpserver/definitions/tora-withImageUpgrade... Ok!
Validating /usr/share/ztpserver/definitions/tora... Ok!

Validating resources...
Validating /usr/share/ztpserver/resources/tor_hostnames... Ok!
Validating /usr/share/ztpserver/resources/ip_loopback... Ok!
Validating /usr/share/ztpserver/resources/ip_vlan100... Ok!
Validating /usr/share/ztpserver/resources/mgmt_subnet... Ok!

Validating nodes...
Validating /usr/share/ztpserver/nodes/001122334456/pattern... Ok!
Validating /usr/share/ztpserver/nodes/001122334456/definition... Ok!
Validating /usr/share/ztpserver/nodes/001122334455/pattern... Ok!
Validating /usr/share/ztpserver/nodes/001122334455/definition... Ok!
Validating /usr/share/ztpserver/nodes/001122334457/pattern... Ok!
Validating /usr/share/ztpserver/nodes/001122334457/definition... Ok!

How do I debug the ZTP Server provisioning process?

	If ZTP Server is running via wsgi, Check the Apache log files. Separate log files can be designated for ZTP Server’s wsgi with the following:

<VirtualHost *:8080>
 CustomLog logs/ztpserver-access_log common
 ErrorLog logs/ztpserver-error_log
 ...
</VirtualHost>

	Run the standalone ZTP Server binary in debug mode and log the output to a file:
ztps --debug 2>&1 | tee ztps.log

	After changing configuration directives in neighbordb, a definition, etc, you may need to remove the node directory of the node-under-test before retrying ZTP on the node. This will ensure that ZTP Server matches the node against neighbordb instead of nodes/<serialnum>/pattern.

	The bootstrap script may be manually run from a switch instead of going through an entire reload/ZTP cycle. To do this, download the script to the switch, then run it locally:

switch# bash wget http://ztpserver:8080/bootstrap
switch# bash chmod +x bootstrap
switch# bash sudo ./bootstrap

	On the client side, make sure you use XMPP (best) or remove syslog (second best) logging - you can configure that in bootstrap.conf.

	When requesting support, please include the output from the server (running in debug mode) and the console/log output from the switch.

How do I disable / enable ZTP mode on a switch

By default, any switch that does not have a startup-config will enter ZTP mode to attempt to retrieve one. This feature was introduced in EOS 3.7 for fixed devices and EOS 4.10 for modular ones. In ZTP mode, the switch sends out DHCP requests on all interfaces and will not forward traffic until it reboots with a config.

To cancel ZTP mode, login as admin and type zerotouch cancel. This will trigger an immediate reload of the switch, after which the switch will be ready to configure manually. At this point, if you ever erase the startup-config and reload, the switch will edn up ZTP mode again.

To completely disable ZTP mode, login as admin and type zerotouch disable. This will trigger an immediate reload of the switch after which the switch will will be ready to configure manually. If you wish to re-enable ZTP, go to configure mode and run zerotouch enable. The next time you erase the startup-config and reload the switch, the switch will end up ZTP mode again.

Note

vEOS instances come with a minimal startup-config so they do not boot in to ZTP mode by default. In order to use vEOS to test ZTP, enter erase startup-config and reload.

How can I test ZTPServer without having to reboot the switch every time?

From a bash shell on the switch:

retrieve the bootstrap file from server
wget http://<ZTP_SERVER>:<PORT>/bootstrap
make file executable
sudo chmod 777 bootstrap
execute file
sudo ./bootstrap

What is the recommended test environment for ZTPServer?

The best way to learn about and test a ZTPServer environment is to build the server and virtual (vEOS) nodes with Packer. See https://github.com/arista-eosplus/packer-ztpserver for directions.

If you setup your own environment, the following recommendations should assist greatly in visualizing the workflow and troubleshooting any issues which may arise. The development team strongly encourages these steps as Best Practices for testing your environment, and, most of these recommendations are also Best Practices for a full deployment.

	During testing, only - run the standalone server in debug mode: ztps --debug in a buffered shell. NOTE: do NOT use this standalone server in production, however, except in the smallest environments (Approx 10 nodes or less, consecutively).

	Do not attempt any detailed debugging from a virtual or serial console. Due to the quantity of information and frequent lack of copy/paste access, this if often painful. Both suggested logging methods, below, can be configured in the Bootstrap configuration.

	(BEST) Setup XMPP logging. There are many XMPP services available, including ejabberd [https://www.ejabberd.im/], and even more clients, such as Adium [https://adium.im/]. This will give you a single pane view of what is happening on all of your test switches. Our demo includes ejabberd with the following configuration:

	Server: im.ztps-test.com (or your ZTPServer IP)

	XMPP admin user: ztpsadmin@im.ztps-test.com, passwd eosplus

	(Second) In place of XMPP, splecify a central syslog server in the bootstrap config.

How do I override the default system-mac in vEOS?

Add the desired MAC address to the first line of the file /mnt/flash/system_mac_address, then reboot (Feature added in 3.13.0F)

[admin@localhost ~]$ echo 1122.3344.5566 > /mnt/flash/system_mac_address

How do I override the default serial number or system-mac in vEOS?

As of vEOS 4.14.0, the serial number and system mac address can be configured with a file in /mnt/flash/veos-config. After modifying SERIALNUMBER or SYSTEMMACADDR, a reboot is required for the changes to take effect.

SERIALNUMBER=ABC12345678
SYSTEMMACADDR=1122.3344.5566

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Internals

	Implementation Details
	Client-side implementation details
	Action attributes

	Bootstrap URLs

	Client - Server API
	URL Endpoints
	GET bootstrap script

	GET bootstrap logging configuration

	POST node details

	GET node definition

	PUT node startup-config

	GET node startup-config

	GET actions/(NAME)

	GET resource files

	GET meta data for a resource or file

	Modules
	Bootstrap Client

	Actions
	add_config

	copy_file

	install_cli_plugin

	install_extension

	install_image

	replace_config

	send_email

	run_bash_script

	run_cli_commands

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Internals

Implementation Details

	Client-side implementation details
	Action attributes

	Bootstrap URLs

Client-side implementation details

Action attributes

The bootstrap script will pass in as argument to the main method of each
action a special object called ‘attributes’. The only API the action
needs to be aware for this object is the ‘get’ method, which will return
the value of an attribute, as configured on the server:

	the value can be local to a particular action or global

	if an attribute is defined at both the local and global scopes, the
local value takes priority

	if an attribute is not defined at either the local or global level,
then the ‘get’ method will return None

e.g. (action code)

def main(attributes):
 print attributes.get(‘software_image’)

Besides the values coming from the server, a couple of special
entries* (always upper case) are also contained in the attributes
object:

	‘NODE’: a node object for making eAPI calls to localhost. See the Bootstrap Client documentation.

e.g. (action_code)

def main(attributes):
 print attributes.get(‘NODE’).api_enable_cmds([‘show version’])

Bootstrap URLs

	DHCP response contains the URL pointing to the bootstrap script on the server

	The location of the server is hardcoded in
the bootstrap script, using the SERVER global variable. The bootstrap
script uses this base address in order to generate the URL to use
in order to GET the logging details: BASE_URL/config e.g.

SERVER = ‘http://my-bootstrap-server:80’ # Note that the port and the transport mechanism
 # is included in the URL

	The bootstrap script uses the SERVER base address in order to compute
the URL to use in order to POST the node’s information:
BASE_URL/config

	The bootstrap script uses the ‘location’ header in the POST reply as
the URL to use in order to request the definition

	Actions and resources URLs& are computed by using the base
address in the bootstrap script: BASE_URL/actions/, BASE_URL/files/

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Internals

Client - Server API

	URL Endpoints
	GET bootstrap script

	GET bootstrap logging configuration

	POST node details

	GET node definition

	PUT node startup-config

	GET node startup-config

	GET actions/(NAME)

	GET resource files

	GET meta data for a resource or file

URL Endpoints

	HTTP Method
	URI

	GET
	/bootstrap

	GET
	/bootstrap/config

	POST
	/nodes

	GET
	/nodes/{id}

	PUT
	/nodes/{id}/startup-config

	GET
	/nodes/{id}/startup-config

	GET
	/actions/{name}

	GET
	/files/{filepath}

	GET
	/meta/{actions|files|nodes}/{PATH_INFO}

GET bootstrap script

	
GET /bootstrap

	Returns the default bootstrap script

Request

GET /bootstrap HTTP/1.1

Response

Content-Type: text/x-python
<contents of bootstrap client script>

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – text/x-python

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – OK

Note

For every request, the bootstrap controller on the
ZTPServer will attempt to perform the following string replacement
in the bootstrap script): “$SERVER“ —> the value of the
“server_url” variable in the server’s global configuration file. This
string replacement will point the bootstrap client back to the
server in order to enable the client to make additional requests for
further resources on the server.

	if the server_url variable is missing from the server’s global
configuration file, ‘http://ztpserver:8080‘ is used by default

	if the $SERVER string is missing from the bootstrap script, the
controller will log a warning message and continue

GET bootstrap logging configuration

	
GET /bootstrap/config

	Returns the logging configuration from the server.

Request

GET /bootstrap/config HTTP/1.1

Response

Content-Type: application/json
{
 “logging”*: [{
 “destination”: “file:/<PATH>” | “<HOSTNAME OR IP>:<PORT>”, //localhost enabled
 //by default
 “level”*: <DEBUG | CRITICAL | ...>,
 }]
},
 “xmpp”*:{
 “server”: <IP or HOSTNAME>,
 “port”: <PORT>, // Optional, default 5222
 “username”*: <USERNAME>,
 “domain”*: <DOMAIN>,
 “password”*: <PASSWORD>,
 “nickname”: <NICKNAME>, // Optional, default ‘username’
 “rooms”*: [<ROOM>, …]
 }
 }
}

Note: * Items are mandatory (even if value is empty list/dict)

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – OK

POST node details

Send node information to the server in order to check whether it can be
provisioned.

	
POST /nodes

	Request

Content-Type: application/json
{
 “model”*: <MODEL_NAME>,
 “serialnumber”*: <SERIAL_NUMBER>,
 “systemmac”*: <SYSTEM_MAC>,
 “version”*: <INTERNAL_VERSION>,
 “neighbors”*: {
 <INTERFACE_NAME(LOCAL)>: [{
 'device': <DEVICE_NAME>,
 'remote_interface': <INTERFACE_NAME(REMOTE)>
 }]
 },
}

Note: * Items are mandatory (even if value is empty list/dict)

Response

Status: 201 Created OR 409 Conflict will both return:

Content-Type: text/html
Location: <url>

	Status Codes:	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Created

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – Conflict

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad Request

GET node definition

Request definition from the server.

	
GET /nodes/(ID)

	Request

GET /nodes/{ID} HTTP/1.1
Accept: application/json

Response

Content-Type: application/json
{
 “name”*: <DEFINITION_NAME>

 “actions”*: [{ “action”*: <NAME>*,
 “description”: <DESCRIPTION>,
 “onstart”: <MESSAGE>,
 “onsuccess”: <MESSAGE>,
 “onfailure”: <MESSAGE>,
 “always_execute”: [True, False],
 “attributes”: { <KEY>: <VALUE>,
 <KEY>: { <KEY> : <VALUE>},
 <KEY>: [<VALUE>, <VALUE>]
 }
 },...]
}

Note: * Items are mandatory (even if value is empty list/dict)

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – application/json

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – OK

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad Request

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Not Found

PUT node startup-config

This is used to backup the startup-config from a node to the server.

	
PUT /nodes/(ID)/startup-config

	Request

Content-Type: text/plain
<startup-config contents>

	Status Codes:	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Created

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad Request

GET node startup-config

This is used to retrieve the startup-config that was backed-up from a node to the server.

	
GET /nodes/(ID)/startup-config

	Request

Content-Type: text/plain

Response

Status: 201 Created OR 409 Conflict will both return:

Content-Type: text/plain
<startup-config contents>

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – text/plain

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – OK

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Bad Request

GET actions/(NAME)

	
GET /actions/(NAME)

	Request action from the server.

Request Example

GET /actions/add_config HTTP/1.1

Response

Content-Type: text/x-python
<raw action content>

	Response Headers:

		
	Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – text/x-python

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – OK

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Not Found

GET resource files

	
GET /files/(RESOURCE_PATH)

	Request action from the server.

Request Examples

GET /files/images/vEOS.swi HTTP/1.1
GET /files/templates/ma1.template HTTP/1.1

Response

<raw resource contents>

:resheader Content-Type:text/plain
:statuscode 200: OK
:statuscode 404: Not Found

GET meta data for a resource or file

	
GET /meta/(actions|files|nodes)/(PATH_INFO)

	Request meta-data on a file.

Example Requests

GET /meta/actions/add_config HTTP/1.1
GET /meta/files/images/EOS-4.14.5F.swi HTTP/1.1
GET /meta/nodes/001122334455/.node HTTP/1.1

Response

{
 sha1: "d3852470a7328a4aad54ce030c543fdac0baa475"
 size: 160
}

:resheader Content-Type:application/json
:statuscode 200: OK
:statuscode 500: Server Error

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Internals

Modules

	Bootstrap Client

	Actions
	add_config

	copy_file

	install_cli_plugin

	install_extension

	install_image

	replace_config

	send_email

	run_bash_script

	run_cli_commands

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Internals

 	Modules

Bootstrap Client

	
class Node(server)[source]

	
	Node object which can be used by actions via:

	attributes.get(‘NODE’)

	
client

	jsonrpclib.Server

jsonrpclib connect to Command API engine

	
api_config_cmds(cmds)[source]

	Run CLI commands via Command API, starting from config mode.

Commands are ran in order.

	Parameters:	cmds (list) – List of CLI commands.

	Returns:	List of Command API results corresponding to the
input commands.

	Return type:	list

	
api_enable_cmds(cmds, text_format=False)[source]

	Run CLI commands via Command API, starting from enable mode.

Commands are ran in order.

	Parameters:	
	cmds (list) – List of CLI commands.

	text_format (bool, optional) – If true, Command API request will run
in text mode (instead of JSON).

	Returns:	List of Command API results corresponding to the
input commands.

	Return type:	list

	
append_rc_eos_lines(lines)[source]

	Add lines to rc.eos.

	Parameters:	lines (list) – List of bash commands

	
append_startup_config_lines(lines)[source]

	Add lines to startup-config.

	Parameters:	lines (list) – List of CLI commands

	
classmethod bash_cmds(cmds)[source]

	Executes bash commands in order - stops on first failure.

	Parameters:	cmds – list of bash commands

	Returns:	first failing command (None otherwise)
code: exit code for first failing command (None otherwise)
out: stdout for first failing command (None otherwise)
err: stderr for first failing command (None otherwise)

	Return type:	cmd

	
details()[source]

	Get details.

	Returns:	System detailsFormat:

{'model': <MODEL>,
 'version': <EOS_VERSION>,
 'systemmac': <SYSTEM_MAC>,
 'serialnumber': <SERIAL_NUMBER>,
 'neighbors': <NEIGHBORS> # see neighbors()
}

	Return type:	dict

	
flash()[source]

	Get flash path.

	Returns:	flash path

	Return type:	string

	
has_startup_config()[source]

	Check whether startup-config is configured or not.

	Returns:	True is startup-config is configured; false otherwise.

	Return type:	bool

	
log_msg(msg, error=False)[source]

	Log message via configured syslog/XMPP.

	Parameters:	
	msg (string) – Message

	error (bool, optional) – True if msg is an error; false otherwise.

	
neighbors()[source]

	Get neighbors.

	Returns:	LLDP neighborFormat:

{'neighbors': {<LOCAL_PORT>:
 [{'device': <REMOTE_DEVICE>,
 'port': <REMOTE_PORT>}, ...],
...}}

	Return type:	dict

	
rc_eos()[source]

	Get rc.eos path.

	Returns:	rc.eos path

	Return type:	string

	
retrieve_url(url, path)[source]

	Download resource from server.

If ‘path’ is somewhere on flash and ‘url’ points back to
SERVER, then the client will request the metadata for
the resource from the server (in order to check whether there
is enogh disk space available). If ‘url’ points to a different
server, then the ‘content-length’ header will be used for the
disk space checks.

	Raises:	ZtpError –
resource cannot be retrieved:
- metadata cannot be retrieved from server OR
- metadata is inconsistent with request OR
- disk space on flash is insufficient OR
- file cannot be written to disk

	Returns:	startup-config path

	Return type:	string

	
classmethod server_address()[source]

	Get ZTP Server URL.

	Returns:	ZTP Server URL.

	Return type:	string

	
startup_config()[source]

	Get startup-config path.

	Returns:	startup-config path

	Return type:	string

	
classmethod substitute(template, substitutions, strict=True)[source]

	Perform variable substitution on a config template.

	Parameters:	
	template (string) – EOS configuration template

	substitutions (dict) – set of substitutions for the template

	strict (bool, optional) – If true, method will raise Exception
when template variables are missing
from ‘substitutions’.

	Returns:	template string with variable substitution

	Return type:	string

	
system()[source]

	Get system information.

	Returns:	System informationFormat:

{'model': <MODEL>,
 'version': <EOS_VERSION>,
 'systemmac': <SYSTEM_MAC>,
 'serialnumber': <SERIAL_NUMBER>}

	Return type:	dict

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Internals

 	Modules

Actions

	add_config

	copy_file

	install_cli_plugin

	install_extension

	install_image

	replace_config

	send_email

	run_bash_script

	run_cli_commands

add_config

	
main(attributes)[source]

	Appends config section to startup-config.

This action is dual-supervisor compatible.

	
url

	path to source config/template

	
substitution_mode

	loose|strict (default: loose)

	
variables

	list of value substitutions

	Special_attributes:

	NODE: API object - see documentation for details

Example

-
 action: add_config
 attributes:
 url: files/templates/ma1.template
 variables:
 ipaddress: allocate('mgmt_subnet')
 name: "configure ma1"
 onstart: "Starting to configure ma1"
 onsuccess: "SUCCESS: ma1 configure"
 onfailure: "FAIL: IM provisioning@example.com for help"

copy_file

	
main(attributes)[source]

	Copies file to the switch.

Copies file based on the values of ‘src_url’ and ‘dst_url’
attributes (‘dst_url’ should point to the destination folder).

This action is NOT dual-supervisor compatible.

	
src_url

	path to source file

	
dst_url

	path to destination

	
mode

	octal mode for destination path

	
overwrite

	replace|if-missing|backup (default: replace)

	‘overwrite’ values:

	
	‘replace’: the file is copied to the switch regardless
of whether there is already a file with the same name at the
destination;

	‘if-missing’: the file is copied to the switch only if
there is not already a file with the same name at the
destination; if there is, then the action is a no-op;

	‘backup’: the file is copied to the switch; if there is
already another file at the destination, that file is renamed
by appending the ‘.backup’ suffix

	Special_attributes:

	NODE: API object - see documentation for details

Example

-
 action: copy_file
 always_execute: true
 attributes:
 dst_url: /mnt/flash/
 mode: 777
 overwrite: if-missing
 src_url: files/automate/bgpautoinf.py
 name: "automate BGP peer interface config"

install_cli_plugin

	
main(attributes)[source]

	Installs CliPlugin.

This action is NOT dual-supervisor compatible.

	
url

	path to the CliPlugin

	Special_attributes:

	NODE: API object - see documentation for details

Example

-
 action: install_image
 always_execute: true
 attributes:
 url: files/my_cli_plugin
 name: "install cli plugin"

install_extension

	
main(attributes)[source]

	Installs extension.

If ‘force’ is
set, then the dependency checks are overridden.

This action is NOT dual-supervisor compatible.

	
url

	path to source extension file

	
force

	ignore validation errors (default: false)

	Special_attributes:

	NODE: API object - see documentation for details

Example

-
 action: install_image
 always_execute: true
 attributes:
 url: files/telemetry-1.0-1.rpm
 name: "Install Telemetry"

install_image

	
main(attributes)[source]

	Installs new software image.

If the current software image is the same as the ‘version’
attribute value, then this action is a no-op. Otherwise, the
action will replace the existing software image.

For dual supervisor systems, the image on the active supervisor is
used as reference.

This action is dual-supervisor compatible.

	
url

	path to source image file

	
version

	EOS version of new image file

	Special_attributes:

	NODE: API object - see documentation for details

Example

-
 action: install_image
 always_execute: true
 attributes:
 url: files/images/vEOS.swi
 version: 4.13.5F
 name: "validate image"
 onstart: "Starting to install image"
 onsuccess: "SUCCESS: 4.13.5F installed"
 onfailure: "FAIL: IM nick@example.com for help"

replace_config

	
main(attributes)[source]

	Replaces /mnt/flash/startup-config with new file.

This action is dual-supervisor compatible.

	
url

	path to source config/template

	Special_attributes:

	NODE: API object - see documentation for details

Example

-
 action: replace_config
 attributes:
 url: files/configs/tor-startup-config
 name: "tor config"

send_email

	
main(attributes)[source]

	Sends an email using an SMTP relay host

Generates an email from the bootstrap process and routes it through a
smarthost. The parameters value expects a dictionary with the
following values in order for this function to work properly.

{
 'smarthost': <hostname of smarthost>,
 'sender': <from email address>
 'receivers': [<array of recipients to send email to>],
 'subject': <subject line of the message>,
 'body': <the message body>,
 'attachments': [<array of files to attach>],
 'commands': [<array of commands to run and attach>]
}

The required fields for this function are smarthost, sender, and
receivers. All other fields are optional.

This action is dual-supervisor compatible.

	Parameters:	
	attributes (list) – list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read attribute values

	node (internal) – attributes.get(‘NODE’) API: see documentation

	smarthost – hostname of smarthos>,

	sender – from email addres>

	receivers – [<array of recipients to send email to>]

	subject – subject line of the message

	body – the message body

	attachments – [<array of files to attach>]

	commands – [<array of commands to run and attach>]

Example

-
 action: send_mail
 attributes:
 smarthost: smtp.example.com
 from: noreply@example.com
 subject: This is a test message from a switch in ZTP
 receivers:
 bob@exmple.com
 helen@example.com
 body: Please see the attached 'show version'
 commands: show version

run_bash_script

	
main(attributes)[source]

	Runs a script in EOS from bash.

This action is dual-supervisor compatible.

	
url

	path to source script/template

	
variables

	optional

list of value substitutions (for a script template)

	Special_attributes:

	NODE: API object - see documentation for details

Example

-
 action: run_bash_script
 attributes:
 url: files/scripts/install_script
 variables:
 version: 1.2.3
 name: 'install temp package'

run_cli_commands

	
main(attributes)[source]

	Runs a set of EOS commands, starting from enable mode.

This action is dual-supervisor compatible.

	
url

	path to source command list/template

	
variables

	optional

list of value substitutions (for a template)

	Special_attributes:

	NODE: API object - see documentation for details

Example

-
 action: run_cli_commands
 attributes:
 url: files/templates/ma1.template
 variables:
 ipaddress: allocate('mgmt_subnet')
 name: 'configure ma1'

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Glossary of terms

	action

	an action is a Python script which is executed during the bootstrap process.

	attribute

	an attribute is a variable that holds a value. attributes are used in order to customise the behaviour of actions which are executed during the bootstrap process.

	definition

	a definition is a YAML file that contains a collection of all actions (and associated attributes) which need to run during the bootstrap process in order to fully provision a node

	neighbordb

	neighbordb is a YAML file which contains a collection of patterns which can be used in order to map nodes to definitions

	node

	a node is a EOS instance which is provisioned via ZTPServer. A node is uniquely identified by its unique_id (serial number or system MAC address) and/or unique position in the network.

	pattern

	a pattern is a YAML file which describes a node in terms of its unique_id (serial number or system MAC) and/or location in the network (neighbors)

	resource pool

	a resource pool is a YAML file which provides a mapping between a set or resources and the nodes to which some of the resources might have been allocated to. The nodes are uniquely identified via their system MAC.

	unique_id

	the unique identifier for a node. This can be configured, globally, to be the serial number (default) or system MAC address in the ztpserver.conf file

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Support

	Contact

	Known caveats

	Releases

	Roadmap highlights
	Release 1.4

	Release 2.0

	Tutorial

	Other Resources

Contact

ZTPServer is an Arista-led open source community project. Users and developers are encouraged to contribute to the project. See CONTRIBUTING [https://github.com/arista-eosplus/ztpserver/blob/develop/CONTRIBUTING.md] for more details.

Before requesting support, please collect the necessary data to include. See Before Requesting Support.

Commercial support may be purchased through your Arista account team.

Community-based support is available through:

	eosplus forum [https://groups.google.com/forum/#!forum/eosplus]

	eosplus-dev@arista.com.

	IRC: irc.freenode.net#arista

Customization, and integration services are available through the EOS+ Consulting Services team at Arista Networks, Inc [http://arista.com/]. Contact eosplus-dev@arista.com or your account team for details.

Known caveats

The authoritative state for any known issue can be found in GitHub issues [https://github.com/arista-eosplus/ztpserver/issues].

	Only a single entry in a resource pool may be allocated to a node.

	Users MUST be aware of the required EOS version for various hardware components (including transcievers). Neighbor (LLDP) validation may fail if a node boots with an EOS version that does not support the installed hardware. Moreoever, some EOS features configured via ZTPServer might be unsupported. Please refer to the Release Notes for more compatability information and to the Transceiver Guide [http://www.arista.com/assets/data/pdf/Transceiver-Guide.pdf] .

	If a lot of nodes are being booted at the same time and they all share the same resource files, retrieving the definition for each might be slow (5s or longer) if the resource files are very large. The workaround is to use custom actions and allocate the resources from alternative sources (other than shared files) - e.g. SQL

Releases

The authoritative state for any known issue can be found in GitHub issues [https://github.com/arista-eosplus/ztpserver/issues].

	Release 1.3.2

	Release 1.3.1

	Release 1.3

	Release 1.2

	Release 1.1

Roadmap highlights

The authoritative state, including the intended release, for any known issue can be found in GitHub issues [https://github.com/arista-eosplus/ztpserver/issues]. The information provided here is current at the time of publishing but is subject to change. Please refer to the latest information in GitHub issues by filtering on the desired milestone [https://github.com/arista-eosplus/ztpserver/milestones].

Release 1.4

Target: April 2015

	plugin infrastructure for resource pool allocation (121 [https://github.com/arista-eosplus/ztpserver/pull/121])

	topology-based ZTR (103 [https://github.com/arista-eosplus/ztpserver/pull/103])

	ZTPServer Cookbook - advanced topics (289 [https://github.com/arista-eosplus/ztpserver/pull/289])

	benchmark scale tests (261 [https://github.com/arista-eosplus/ztpserver/pull/261])

Release 2.0

Target: June 2015

	configure HTTP timeout in bootstrap.conf (246 [https://github.com/arista-eosplus/ztpserver/pull/246])

	all requests from the client should contain the unique identifier of the node (188 [https://github.com/arista-eosplus/ztpserver/pull/188])

	dual-sup support for install_extension action (180 [https://github.com/arista-eosplus/ztpserver/pull/180])

	dual-sup support for install_cli_plugin action (179 [https://github.com/arista-eosplus/ztpserver/pull/179])

	dual-sup support for copy_file action (178 [https://github.com/arista-eosplus/ztpserver/pull/178])

	action for arbitrating between MLAG peers (141 [https://github.com/arista-eosplus/ztpserver/pull/141])

	plugin infrastructure for resource pool allocation (121 [https://github.com/arista-eosplus/ztpserver/pull/121])

	md5sum checks for all downloaded resources (107 [https://github.com/arista-eosplus/ztpserver/pull/107])

	topology-based ZTR (103 [https://github.com/arista-eosplus/ztpserver/pull/103])

Tutorial

See https://eos.arista.com/quick-and-easy-veos-lab-setup/.

Other Resources

ZTPServer documentation and other reference materials are below:

	GitHub ZTPServer Repository [https://github.com/arista-eosplus/ztpserver]

	ZTPServer wiki [https://github.com/arista-eosplus/ztpserver/wiki]

	Packer VM [https://github.com/arista-eosplus/packer-ztpserver] build process

	ZTPServer [https://pypi.python.org/pypi/ztpserver] Python (PyPI) package

	YAML Code Validator [http://yamllint.com/]

	ZTPServer WSGI Benchmarking [https://eos.arista.com/ztpserver-benchmarking-the-webserver-gateway-interface]

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Support

Release 1.3.2

(Published March, 2015)

The authoritative state for any known issue can be found in GitHub issues [https://github.com/arista-eosplus/ztpserver/issues].

Bug fixes

	
	Prevented .node file from becoming corrupted on the server (298 [https://github.com/arista-eosplus/ztpserver/issues/298])

	

	
	Added .node filename to server-side logs (297 [https://github.com/arista-eosplus/ztpserver/issues/297])

	

	
	Change refresh_ztps script default to “master”

	Refresh_ztps will, by default, update the installation to the latest released version. Previously, the default was to the development branch which may still be accomplished with refresh_ztps --branch develop.

	Fixes to RPM packaging:

	
	Quieted chcon during install (295 [https://github.com/arista-eosplus/ztpserver/issues/295])

	

	
	Fixed issue where config files may not be kept during upgrade (296 [https://github.com/arista-eosplus/ztpserver/issues/296])

	

	
	Fixed issue with native rpmbuild due to changes in handling VERSION (294 [https://github.com/arista-eosplus/ztpserver/issues/294])

	

	Documentation updates:

	
	Troubleshooting chapter (272 [https://github.com/arista-eosplus/ztpserver/issues/272])

	

	
	Additional content in the ZTP Server Cookbook (289 [https://github.com/arista-eosplus/ztpserver/issues/289])

	

	
	ZTP Server benchmarking results

	

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Support

Release 1.3.1

(Published February, 2015)

The authoritative state for any known issue can be found in GitHub issues [https://github.com/arista-eosplus/ztpserver/issues].

Bug fixes

	fixes pip install/uninstall issues

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Support

Release 1.3

(Published February, 2015)

The authoritative state for any known issue can be found in GitHub issues [https://github.com/arista-eosplus/ztpserver/issues].

Enhancements

	ztps --validate validates:
	neighbordb syntax and patterns

	resource files syntax

	definition files syntax

	pattern files syntax

$ ztps --validate
Validating neighbordb ('/usr/share/ztpserver/neighbordb')...
2015-01-13 18:03:55,006:ERROR:[validators:111] N/A: PatternValidator validation error: missing attribute: definition
2015-01-13 18:03:55,006:ERROR:[validators:111] N/A: NeighbordbValidator validation error: invalid patterns: set([(0, 's7151')])

ERROR: Failed to validate neighbordb patterns
Invalid Patterns (count: 1)

[0] s7151

Validating definitions...
Validating /usr/share/ztpserver/definitions/leaf.definition... Ok!
Validating /usr/share/ztpserver/definitions/leaf-no_vars.definition... Ok!

Validating resources...
Validating /usr/share/ztpserver/resources/leaf_man_ip... Ok!
Validating /usr/share/ztpserver/resources/leaf_spine_ip...
ERROR: Failed to validate /usr/share/ztpserver/resources/leaf_spine_ip
validator: unable to deserialize YAML data:
10.0.0.51/24: null
10.0.0.53/24: null
dfdsf dsfsd
10.0.0.54/24: JPE14140273

Error:
while scanning a simple key
in "<string>", line 3, column 1:
dfdsf dsfsd
could not found expected ':'
in "<string>", line 5, column 1:
10.0.0.54/24: JPE14140273
^

Validating nodes...
Validating /usr/share/ztpserver/nodes/JAS12170010/definition... Ok!
Validating /usr/share/ztpserver/nodes/JAS12170010/pattern... Ok!

	run_bash_script action allows users to run bash scripts during the bootstrap process

	run_cli_commands action allows users to run CLI commands during the bootstrap process

	config-handlers can be used in order to trigger scripts on the server on PUT startup-config request completion

	The auto replace_config action which is added to the definition whenever a startup-config file is present in a node’s folder is now the first action in the definition which is sent to the client. This enables performing configuration updates during ZTR (Zero Touch Replacement) via ‘always_execute’ add_config actions in the definition file. One particularly interesting use-case is replacing one node with another one of a different model.

	ztps --clear-resources clears all resource allocations

	server-side logs are timestamped by default

	ZTP Server shows running version on-startup

ztps
2015-02-09 16:50:35,922:INFO:[app:121] Starting ZTPServer v1.3.0...
...

Bug fixes

	upgrades/downgrades to/from v1.3+ will preserve the configuration files
	ztpserver.conf, ztpserver.wsgi, bootstrap.conf and neighbordb are preserved (new default files are installed under <filename>.new)

	all definitions, config-handlers, files, node folder, resources and files are preserved

	bootstrap file, actions and libraries are always overwritten

	bootstrap.conf now supports specifying empty config sections:

logging:
 ...
xmpp:

logging:
xmpp:
 ...

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Support

Release 1.2

(Published December, 2014)

The authoritative state for any known issue can be found in GitHub issues [https://github.com/arista-eosplus/ztpserver/issues].

Enhancements

	
	Enhance neighbordb documentation (255 [https://github.com/arista-eosplus/ztpserver/issues/255])

	

	
	In case of failure, bootstrap cleanup removes temporary files that were copied onto switch during provisioning (253 [https://github.com/arista-eosplus/ztpserver/issues/253])

	

	
	“ERROR: unable to disable COPP” should be a warning on old EOS platforms (242 [https://github.com/arista-eosplus/ztpserver/issues/242])

	A detailed warning will be displayed if disabling COPP fails (instead of an error).

	
	Enhance documentation for open patterns(239 [https://github.com/arista-eosplus/ztpserver/issues/239])

	

	
	Document guidelines on how to test ZTPS (235 [https://github.com/arista-eosplus/ztpserver/issues/235])

	

	
	Document http://www.yamllint.com/ as a great resource for checking YAML files syntax (234 [https://github.com/arista-eosplus/ztpserver/issues/234])

	

	
	Make ”name” an optional attribute in local pattern files (233 [https://github.com/arista-eosplus/ztpserver/issues/233])

	node pattern file can contain only the interfaces directive now
e.g.

interfaces:
- any:
 device: any
 port: any

	
	Documentation should clarify that users must be aware of the EOS version in which certain transceivers were introduced (232 [https://github.com/arista-eosplus/ztpserver/issues/232])

	

	
	Enhance the Apache documentation (231 [https://github.com/arista-eosplus/ztpserver/issues/231])

	

	
	Enhance documentation related to config files (229 [https://github.com/arista-eosplus/ztpserver/issues/229])

	

	Disable meta information checks for remote URLs (224 [https://github.com/arista-eosplus/ztpserver/issues/224])

	if URL points to ZTP server and destination is on flash, use metadata request to compute disk space (other metadata could be added here in the future)

	it URL points to a remote server and destination is on flash, use ‘content-length’ to compute disk space - this will skip the metadata request

	Assume port 514 for remote syslog, if missing from bootstrap.conf (218 [https://github.com/arista-eosplus/ztpserver/issues/218])

When configuring remote syslog destinations in bootstrap.conf, the port number is not mandatory anymore (if missing, a default value of 514 is assumed).

e.g.

logging:
 - destination: pcknapweed
 level: DEBUG

	
	Deal more gracefully with YAML errors in neighbordb (216 [https://github.com/arista-eosplus/ztpserver/issues/216])

	YAML serialization errors are now exposed in ZTPS logs:

DEBUG: [controller:170] JPE14140273: running post_node
ERROR: [topology:83] JPE14140273: failed to load file: /usr/share/ztpserver/neighbordb
ERROR: [topology:116] JPE14140273: failed to load neighbordb:
expected a single document in the stream
 in "<string>", line 26, column 1:
 patterns:
 ^
but found another document
 in "<string>", line 35, column 1:

 ^
DEBUG: [controller:182] JPE14140273: response to post_node: {'status': 400, 'body': '', 'content_type': 'text/html'}
s7056.lab.local - - [03/Nov/2014 21:05:33] "POST /nodes HTTP/1.1" 400 0

	
	Deal more gracefully with DNS/connectivity errors while trying to access remote syslog servers (215 [https://github.com/arista-eosplus/ztpserver/issues/215])

	Logging errors (e.g. bogus destination) will not be automatically logged by the bootstrap script. In order to debug logging issues, simply uncomment the following lines in the bootstrap script:

#---------------------------------SYSLOG----------------------
Comment out this section in order to enable syslog debug
logging
logging.raiseExceptions = False
#---------------------------------XMPP------------------------

Example of output which is suppressed by default:

Traceback (most recent call last):
 File "/usr/lib/python2.7/logging/handlers.py", line 806, in emit
 self.socket.sendto(msg, self.address)
gaierror: [Errno -2] Name or service not known
Logged from file bootstrap, line 163

	
	Make ”name” an optional attribute in node definitions (214 [https://github.com/arista-eosplus/ztpserver/issues/214])

	Definitions under /nodes/<NODE> do not have to have a ‘name’ attribute.

	
	Increase HTTP timeout in bootstrap script (212 [https://github.com/arista-eosplus/ztpserver/issues/212])

	HTTP timeout in bootstrap script is now 30s. https://github.com/arista-eosplus/ztpserver/issues/246 tracks making that configurable via bootstrap.conf. In the meantime, the workaround for changing it is manually editing the bootstrap file.

	
	Remove fake prefixes from client and actions function names in docs (204 [https://github.com/arista-eosplus/ztpserver/issues/204])

	

	
	Tips and tricks - clarify vEOS version for both ways to set system MAC (203 [https://github.com/arista-eosplus/ztpserver/issues/203])

	

	Enhance logging for “copy_file” action (187 [https://github.com/arista-eosplus/ztpserver/issues/187])

	
	Local interface pattern specification should also allow management interfaces (185 [https://github.com/arista-eosplus/ztpserver/issues/185])

	Local interface allows for:

	management interface or interface range, using either mXX, maXX, MXX, MaXX, ManagementXX (where XX is the range)

	management + ethernet specification on the same line: Management1-3,Ethernet3,5,6/7

	
	Bootstrap script should cleanup on failure (176 [https://github.com/arista-eosplus/ztpserver/issues/176])

	$ python bootstrap --help
usage: bootstrap [options]

optional arguments:
 -h, --help show this help message and exit
 --no-flash-factory-restore, -n
 Do NOT restore flash config to factory defaul

Added extra command-line option for the bootstrap script for testing.

	Default behaviour:

	
	clear rc.eos, startup-config, boot-extensions (+folder) at the beginning of the process

	in case of failure, delete all new files added to flash

	‘-n’ behaviour:

	
	leave rc.eos, startup-config, boot-extensions (+folder) untouched

	instead, bootstrap will create the new files corresponding to the above, with the ”.ztp” suffix

	never remove any files from flash at the end of the process, regardless of the outcome

	
	Allow posting the startup-config to a node’s folder, even if no startup-config is already present (169 [https://github.com/arista-eosplus/ztpserver/issues/169])

	

	
	Remove definition line from auto-generated pattern (102 [https://github.com/arista-eosplus/ztpserver/issues/102])

	When writing the pattern file in the node’s folder (after a neighbordb match):

	‘definition’ line is removed

	‘variables’ and ‘node’ are only written if non-empty

	‘name’ (that’s the pattern’s name) and ‘interfaces’ are always written

Fixed

	
	server_url requires trailing slash “/” when adding subdirectory (244 [https://github.com/arista-eosplus/ztpserver/issues/244])

	

	
	Error when doing static node provisioning using replace_config (241 [https://github.com/arista-eosplus/ztpserver/issues/241])

	

	
	XMPP messages are missing the system ID (236 [https://github.com/arista-eosplus/ztpserver/issues/236])

	XMPP messages now contain the serial number of the switch sending the message. ‘N/A’ is shown if the serial number is not available or empty.

	
	Fix “node:” directive behaviour in neighbordb (230 [https://github.com/arista-eosplus/ztpserver/issues/230])

	
	The following ‘patterns’ are now valid in neighbordb:

	
	name, definition, node [,variables]

	name, definition, interfaces [,variables]

	name, definition, node, interfaces [,variables]

	
	node.retrieve_resource should be a no-op if the file is already on the disk (225 [https://github.com/arista-eosplus/ztpserver/issues/225])

	When computing the available disk space on flash for saving a file, the length of the file which is about to be overwritten is also considered.

	
	Ignore content-type when retrieving a resource from a remote server or improve on the error message (222 [https://github.com/arista-eosplus/ztpserver/issues/222])

	If a resource is retrieved from some other server (which is NOT the ZTPServer itself), then we allow any content-type.

	
	ztpserver.wsgi is not installed by setup.py (220 [https://github.com/arista-eosplus/ztpserver/issues/220])

	

	
	ztps –validate broken in 1.1 (217 [https://github.com/arista-eosplus/ztpserver/issues/217])

	ztps --validate PATH_TO_NEIGHBORDB

can be used in order to validate the syntax of a neighbordb file.

	
	install_extension action copies the file to the switch but doesn’t install it (206 [https://github.com/arista-eosplus/ztpserver/issues/206])

	

	
	Bootstrap XMPP logging - client fails to create the specified MUC room (148 [https://github.com/arista-eosplus/ztpserver/issues/148])

	In order for XMPP logging to work, a non-EOS user need to be connected to the room specified in bootstrap.conf, before the ZTP process starts. The room has to be created (by the non-EOS user), before the bootstrap client starts logging the ZTP process via XMPP.

	
	ZTPS server fails to write .node because lack of permissions (126 [https://github.com/arista-eosplus/ztpserver/issues/126])

	

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

 	Support

Release 1.1

(Published August, 2014)

The authoritative state for any known issue can be found in GitHub issues [https://github.com/arista-eosplus/ztpserver/issues].

Enhancements

	
	V1.1.0 docs (181 [https://github.com/arista-eosplus/ztpserver/pull/181])

	Documentation has been completely restructured and is now hosted at http://ztpserver.readthedocs.org/.

	
	refresh_ztps - util script to refresh ZTP Server installation (177 [https://github.com/arista-eosplus/ztpserver/issues/177])

	/utils/refresh_ztps can be used in order to automatically refresh the installation of ZTP Server to the latest code on GitHub. This can be useful in order to pull bug fixes or run the latest version of various development branches.

	
	Et49 does not match Ethernet49 in neighbordb/pattern files (172 [https://github.com/arista-eosplus/ztpserver/issues/172])

	The local interface in an interface pattern does not have to use the long interface name. For example, all of the following will be treated similarly: Et1, e1, et1, eth1, Eth1, ethernet1, Ethernet1.

Note that this does not apply to the remote interface, where different rules apply.

	
	Improve server-side log messages when there is no match for a node on the server (171 [https://github.com/arista-eosplus/ztpserver/issues/171])

	

	
	Improve error message on server side when definition is missing from the definitions folder (170 [https://github.com/arista-eosplus/ztpserver/issues/170])

	

	
	neighbordb should also support serialnumber as node ID (along with system MAC) (167 [https://github.com/arista-eosplus/ztpserver/issues/167])

	Server now supports two types of unique identifiers, as specified in ztpserver.conf:

UID used in the /nodes structure (either systemmac or serialnumber)
identifier = serialnumber

The configuration is global and applies to a single run of the server (neighbordb, resource files, nodes’ folders, etc.).

	
	serialnumber should be the default identifier instead of systemmac (166 [https://github.com/arista-eosplus/ztpserver/issues/166])

	The default identifier in ztpserver.conf is the serial number. e.g.

UID used in the /nodes structure (either systemmac or serialnumber)
identifier = serialnumber

This is different from v1.0, where the systemmac was the default.

	
	Document which actions are dual-sup compatible and which are not (165 [https://github.com/arista-eosplus/ztpserver/issues/165])

	All actions now document whether they are dual-sup compatible or not. See documentation for the details.

	
	dual-sup support for install_image action (164 [https://github.com/arista-eosplus/ztpserver/issues/164])

	install_image is now compatible with dual-sup systems.

	
	Resource pool allocation should use the identifier instead of the systemmac (162 [https://github.com/arista-eosplus/ztpserver/issues/162])

	The values in the resource files will be treated as either system MACs or serial numbers, depending on what identifier is configured in the global configuration file.

	
	Document actions APIs (157 [https://github.com/arista-eosplus/ztpserver/issues/157])

	The API which can be used by actions is now documented in the documentation for the bootstrap script module.

	
	Get rid of return codes in bootstrap script (155 [https://github.com/arista-eosplus/ztpserver/issues/155])

	

	
	Bootstrap script should always log a detailed message before exiting (153 [https://github.com/arista-eosplus/ztpserver/issues/153])

	bootstrap script will log the reason for exiting, instead of an error code.

	
	Client should report what the error code means (150 [https://github.com/arista-eosplus/ztpserver/issues/150])

	

	
	Improve server logs when server does not know about the node (145 [https://github.com/arista-eosplus/ztpserver/issues/145])

	

	
	Configurable verbosity for logging options (server side) (140 [https://github.com/arista-eosplus/ztpserver/issues/140])

	Bootstrap configuration file can now specify the verbosity of client-side logs:

...
xmpp:
username: ztps
password: ztps
domain: pcknapweed.lab.local
msg_type : debug
rooms:
 - ztps-room

The allowed values are:

	debug: verbose logging

	info: log only messages coming from the server (configured in definitions)

The information is transmitted to the client via the bootstrap configuration request:

####GET logging configuration
Returns the logging configuration from the server.

 GET /bootstrap/config

Request

 Content-Type: text/html

Response

 Status: 200 OK
 Content-Type: application/json
 {
 “logging”*: [{
 “destination”: “file:/<PATH>” | “<HOSTNAME OR IP>:<PORT>”, //localhost enabled
 //by default
 “level”*: <DEBUG | CRITICAL | ...>,
 }]
 },
 “xmpp”*:{
 “server”: <IP or HOSTNAME>,
 “port”: <PORT>, // Optional, default 5222
 “username”*: <USERNAME>,
 “domain”*: <DOMAIN>,
 “password”*: <PASSWORD>,
 “nickname”: <NICKNAME>, // REMOVED
 “rooms”*: [<ROOM>, …]
 “msg_type”: [“info” | “debug”] // Optional, default “debug”

 }
 }

>**Note**: * Items are mandatory (even if value is empty list/dict)

P.S. (slightly unrelated) The nickname configuration has been deprecated (serialnumber is used instead).

	
	Configurable logging levels for xmpp (139 [https://github.com/arista-eosplus/ztpserver/issues/139])

	bootstrap.conf:

logging:
...
xmpp:
...
nickname: ztps // (unrelated) this was removed - using serial number instead
msg_type: info // allowed values ['info', 'debug']

If msg_type is set to ‘info’, only log via XMPP error messages and ‘onstart’, ‘onsuccess’ and ‘onfailure’ error messages (as configured in the definition).

	
	Bootstrap should rename LLDP SysDescr to “provisioning” while executing or failing (138 [https://github.com/arista-eosplus/ztpserver/issues/138])

	

	
	Test XMPP for multiple nodes being provisioned at the same time (134 [https://github.com/arista-eosplus/ztpserver/issues/134])

	

	
	Server logs should include ID (MAC/serial number) of node being provisioned (133 [https://github.com/arista-eosplus/ztpserver/issues/133])

	Most of the server logs will not be prefixed by the identifier of the node which is being provisioned - this should make debugging environments where multiple nodes are provisioned at the same time a lot easier.

	
	Use serial number instead of system MAC as the unique system ID (131 [https://github.com/arista-eosplus/ztpserver/issues/131])

	

	
	Bootstrap script should disable copp (122 [https://github.com/arista-eosplus/ztpserver/issues/122])

	

	
	Bootstrap script should check disk space before downloading any resources (118 [https://github.com/arista-eosplus/ztpserver/issues/118])

	Bootstrap script will request the meta information from server, whenever it attempts to save a file to flash. This information will be used in order to check whether enough disk space is available for downloading the resource.

####GET action metadata
Request action from the server.

 GET /meta/actions/NAME

Request

 Content-Type: text/html

Response

Status: 200 OK
 Content-Type: application/json
 {
 “size”*: <SIZE IN BYTES>,
 “sha1”: <HASH STRING>
 }

>**Note**: * Items are mandatory (even if value is empty list/dict)

 Status: 404 Not found
 Content-Type: text/html

 Status: 500 Internal server error // e.g. permissions issues on server side
 Content-Type: text/html

	
	ztps should check Python version and report a sane error is incompatible version is being used to run it (110 [https://github.com/arista-eosplus/ztpserver/issues/110])

	ztps reports error if it is ran on a system with an incompatible Python version installed.

	
	Do not hardcode Python path (109 [https://github.com/arista-eosplus/ztpserver/issues/109])

	

	
	Set XMPP nickname to serial number (106 [https://github.com/arista-eosplus/ztpserver/issues/106])

	Serial number is used as XMPP presence/nickname. For vEOS instances which don’t have one configured, systemmac is used instead.

	
	Send serial number as XMPP presence (105 [https://github.com/arista-eosplus/ztpserver/issues/105])

	Serial number is used as XMPP presence/nickname. For vEOS instances which don’t have one configured, systemmac is used instead.

	
	Support for EOS versions < 4.13.3 (104 [https://github.com/arista-eosplus/ztpserver/issues/104])

	ZTP Server bootstrap script now supports any EOS v4.12.x or later.

	
	neighbordb should not be cached (97 [https://github.com/arista-eosplus/ztpserver/issues/97])

	Neighbordb is not cached on the server side. This means that any updates to it do not require a server restart anymore.

	
	Definitions/actions should be loaded form disk on each GET request (87 [https://github.com/arista-eosplus/ztpserver/issues/87])

	Definitions and actions are not cached on the server side. This means that any updates to them do not require a server restart anymore.

	
	Fix all pylint warnings (83 [https://github.com/arista-eosplus/ztpserver/issues/83])

	

	
	add_config action should also accept server-root-relative path for the URL (71 [https://github.com/arista-eosplus/ztpserver/issues/71])

	‘url’ atrribute in add_config action can be either a URL or a local server path.

	
	install_image action should also accept server-root-relative path for the URL (70 [https://github.com/arista-eosplus/ztpserver/issues/70])

	‘url’ atrribute in install_image action can be either a URL or a local server path.

	
	Server logs should be timestamped (63 [https://github.com/arista-eosplus/ztpserver/issues/63])

	All server-side logs now contain a timestamp. Use ‘ztps –debug’ for verbose debug output.

	
	After installing ZTPServer, there should be a dummy neighbordb (with comments and examples) and a dummy resource (with comments and examples) in /usr/share/ztpserver (48 [https://github.com/arista-eosplus/ztpserver/issues/48])

	

	
	need test coverage for InterfacePattern (42 [https://github.com/arista-eosplus/ztpserver/issues/42])

	

	
	test_topology must cover all cases (40 [https://github.com/arista-eosplus/ztpserver/issues/40])

	

Resolved issues

	
	Syslog messages are missing system-id (vEOS) (184 [https://github.com/arista-eosplus/ztpserver/issues/184])

	All client-side log message are prefixed by the serial number for now (regardless of what the identifier is configured on the server).

For vEOS, if the system does not have a serial number configured, the system MAC will be used instead.

	
	No logs while executing actions (182 [https://github.com/arista-eosplus/ztpserver/issues/182])

	

	
	test_repository.py is leaking files (174 [https://github.com/arista-eosplus/ztpserver/issues/174])

	

	
	Allocate function will return some SysMac in quotes, others not (137 [https://github.com/arista-eosplus/ztpserver/issues/137])

	

	
	Actions which don’t require any attributes are not supported (129 [https://github.com/arista-eosplus/ztpserver/issues/129])

	

	
	Static pattern validation fails in latest develop branch (128 [https://github.com/arista-eosplus/ztpserver/issues/128])

	

	
	Have a way to disable topology validation for a node with no LLDP neighbors (127 [https://github.com/arista-eosplus/ztpserver/issues/127])

	COPP is disabled during the bootstrap process for EOS v4.13.x and later. COPP is not supported for older releases.

	
	Investigate “No loggers could be found for logger sleekxmpp.xmlstream.xmlstream” error messages on client side (120 [https://github.com/arista-eosplus/ztpserver/issues/120])

	

	
	ZTPS should not fail if no variables are defined in neighbordb (114 [https://github.com/arista-eosplus/ztpserver/issues/114])

	

	
	ZTPS should not fail if neighbordb is missing (113 [https://github.com/arista-eosplus/ztpserver/issues/113])

	

	
	ZTPS installation should create dummy neighbordb (112 [https://github.com/arista-eosplus/ztpserver/issues/112])

	ZTP Server install will create a placeholder neighbordb with instructions.

	
	Deal more gracefully with invalid YAML syntax in resource files (75 [https://github.com/arista-eosplus/ztpserver/issues/75])

	

	
	Server reports AttributeError if definition is not valid YAML (74 [https://github.com/arista-eosplus/ztpserver/issues/74])

	

	
	fix issue with Pattern creation from neighbordb (44 [https://github.com/arista-eosplus/ztpserver/issues/44])

	

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	ZTPServer 1.3.2 documentation

Troubleshooting

	Basics
	Updating to the latest Release is strongly encouraged

	If the switch is not attempting Zero Touch Provisioning

	Validate the ZTP Server configuration syntax

	Other troubleshooting steps

	Before Requesting Support
	Version and Install method

	Server-side logs

	Client-side logs

	Configuration Files

Basics

When the ZTP process isn’t behaving as expected, there are some basics that
should be checked regularly.

Updating to the latest Release is strongly encouraged

ZTP Server is continually being enhanced and improved and its entirely possible that
the issue you’ve encountered has already been addressed, either in the documentation
such as Tips and tricks, or in the code, itself. Therefore, we strongly encourage anyone
experiencing difficulty to reproduce the issue on the latest release version before
opening an issue or requesting support. See Upgrading.

If the switch is not attempting Zero Touch Provisioning

Check whether ZTP has been disabled on the switch:

Arista#show zerotouch

Validate the ZTP Server configuration syntax

Many errors are simply due to typos or other syntax issues in config files.
It is good practice to use the –validate option to ztps and to paste configs
in to http://yamllint.com/ to ensure they are well-formed YAML:

[user@ztpserver]$ ztps -–validate-config

Other troubleshooting steps

A number of other troubleshooting steps including how to specify the separate
apache log files just for ZTP Server, and how to do a test run of ztpserver
without reloading a switch are located on the Tips and tricks page.

Before Requesting Support

Before requesting support, it is important to perform the following steps to
collect sufficient data to reduce information requests and enable timely resolution.

Version and Install method

If not already recorded in the logs, please execute ztps --version and
specify whether your installation was from source (github), pip, RPM, or
a packer-ztpserver canned VM.

Server-side logs

The location of server-side logs may vary depending on your specific environment.

	If running ZTP Server via Apache, check the VirtualHost definition for
CustomLog and ErrorLog entries, otherwise, look in the default Apache logs.
On Fedora, those will be in /var/log/httpd/

	If running the standalone ztps binary, a good choice for debugging, please
include the --debug option. Using ztps --debug 2>&1 | tee ztpserver.log will log
the output to both the screen and a file.

Client-side logs

Ensure the bootstrap client is configured to log to syslog or XMPP via
/usr/share/ztpserver/bootstrap/bootstrap.conf and include that output. Attempting to
collect client side logs from the console frequently results in missing information
due to scroll buffers or line length.

Configuration Files

Please, also, include the files in /etc/ztpserver/ and /usr/share/ztpserver/
directories. tar czvf my_ztpserver_config.tgz /etc/ztpserver/ /usr/share/ztpserver/

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 previous |

 	ZTPServer 1.3.2 documentation

License

Copyright (c) 2013-2015, Arista Networks
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Neither the name of the Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Third party

Requests v2.3.0: HTTP for Humans

Copyright 2014 Kenneth Reitz

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	ZTPServer 1.3.2 documentation

 HTTP Routing Table

 /actions |
 /bootstrap |
 /files |
 /meta |
 /nodes

 			

 		
 /actions	

 	
 	
 GET /actions/(NAME)	

 			

 		
 /bootstrap	

 	
 	
 GET /bootstrap	

 	
 	
 GET /bootstrap/config	

 			

 		
 /files	

 	
 	
 GET /files/(RESOURCE_PATH)	

 			

 		
 /meta	

 	
 	
 GET /meta/(actions|files|nodes)/(PATH_INFO)	

 			

 		
 /nodes	

 	
 	
 GET /nodes/(ID)	

 	
 	
 GET /nodes/(ID)/startup-config	

 	
 	
 POST /nodes	

 	
 	
 PUT /nodes/(ID)/startup-config	

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	ZTPServer 1.3.2 documentation

 Python Module Index

 a |
 c

 			

 		
 a	

 	[image: -]
 	
 actions	

 	
 	
 actions.add_config	

 	
 	
 actions.copy_file	

 	
 	
 actions.install_cli_plugin	

 	
 	
 actions.install_extension	

 	
 	
 actions.install_image	

 	
 	
 actions.replace_config	

 	
 	
 actions.run_bash_script	

 	
 	
 actions.run_cli_commands	

 	
 	
 actions.send_email	

 			

 		
 c	

 	[image: -]
 	
 client	

 	
 	
 client.bootstrap	

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	ZTPServer 1.3.2 documentation

Index

 A
 | B
 | C
 | D
 | F
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | V

A

 	

 	action

 	actions.add_config (module)

 	actions.copy_file (module)

 	actions.install_cli_plugin (module)

 	actions.install_extension (module)

 	actions.install_image (module)

 	actions.replace_config (module)

 	actions.run_bash_script (module)

 	

 	actions.run_cli_commands (module)

 	actions.send_email (module)

 	api_config_cmds() (Node method)

 	api_enable_cmds() (Node method)

 	append_rc_eos_lines() (Node method)

 	append_startup_config_lines() (Node method)

 	attribute

B

 	

 	bash_cmds() (client.bootstrap.Node class method)

C

 	

 	client (Node attribute)

 	

 	client.bootstrap (module)

D

 	

 	definition

 	details() (Node method)

 	

 	dst_url (in module actions.copy_file)

F

 	

 	flash() (Node method)

 	

 	force (in module actions.install_extension)

H

 	

 	has_startup_config() (Node method)

L

 	

 	log_msg() (Node method)

M

 	

 	main() (in module actions.add_config)

 	

 	(in module actions.copy_file)

 	(in module actions.install_cli_plugin)

 	(in module actions.install_extension)

 	(in module actions.install_image)

 	(in module actions.replace_config)

 	(in module actions.run_bash_script)

 	(in module actions.run_cli_commands)

 	(in module actions.send_email)

 	

 	mode (in module actions.copy_file)

N

 	

 	neighbordb

 	neighbors() (Node method)

 	

 	node

 	Node (class in client.bootstrap)

O

 	

 	overwrite (in module actions.copy_file)

P

 	

 	pattern

R

 	

 	rc_eos() (Node method)

 	resource pool

 	

 	retrieve_url() (Node method)

S

 	

 	server_address() (client.bootstrap.Node class method)

 	src_url (in module actions.copy_file)

 	startup_config() (Node method)

 	

 	substitute() (client.bootstrap.Node class method)

 	substitution_mode (in module actions.add_config)

 	system() (Node method)

U

 	

 	unique_id

 	

 	url (in module actions.add_config)

 	

 	(in module actions.install_cli_plugin)

 	(in module actions.install_extension)

 	(in module actions.install_image)

 	(in module actions.replace_config)

 	(in module actions.run_bash_script)

 	(in module actions.run_cli_commands)

V

 	

 	variables (in module actions.add_config)

 	

 	(in module actions.run_bash_script)

 	(in module actions.run_cli_commands)

 	

 	version (in module actions.install_image)

 Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

 _modules/actions/send_email.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for actions.send_email

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
#
Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
#
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
#
Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import smtplib

from email.mime import multipart as MIMEMultipart
from email.mime import base as MIMEBase
from email import encoders as Encoders
from email.mime.text import MIMEText

from email.utils import COMMASPACE, formatdate

def send_message(smarthost, sender, receivers, msg):
 smtp = smtplib.SMTP(smarthost)
 smtp.sendmail(sender, COMMASPACE.join(receivers), msg.as_string())
 smtp.close()

def run_command(command, node):
 command = command.strip()
 output = node.api_enable_cmds([command], text_format=True)
 filename = str(command).replace(' ', '_')
 open(filename, 'w').write(' '.join(output))
 return filename

[docs]def main(attributes):
 '''Sends an email using an SMTP relay host

 Generates an email from the bootstrap process and routes it through a
 smarthost. The parameters value expects a dictionary with the
 following values in order for this function to work properly.
 ::

 {
 'smarthost': <hostname of smarthost>,
 'sender': <from email address>
 'receivers': [<array of recipients to send email to>],
 'subject': <subject line of the message>,
 'body': <the message body>,
 'attachments': [<array of files to attach>],
 'commands': [<array of commands to run and attach>]
 }

 The required fields for this function are smarthost, sender, and
 receivers. All other fields are optional.

 This action is dual-supervisor compatible.

 Args:
 attributes (list): list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read attribute values
 node (internal): attributes.get('NODE') API: see documentation
 smarthost: hostname of smarthos>,
 sender: from email addres>
 receivers: [<array of recipients to send email to>]
 subject: subject line of the message
 body: the message body
 attachments: [<array of files to attach>]
 commands: [<array of commands to run and attach>]

 Example:
 ::

 -
 action: send_mail
 attributes:
 smarthost: smtp.example.com
 from: noreply@example.com
 subject: This is a test message from a switch in ZTP
 receivers:
 bob@exmple.com
 helen@example.com
 body: Please see the attached 'show version'
 commands: show version

 '''

 node = attributes.get('NODE')

 smarthost = attributes.get('smarthost')
 if not smarthost:
 raise Exception('Missing attribute(\'smarthost\')')

 sender = attributes.get('sender')
 if not sender:
 raise Exception('Missing attribute(\'sender\')')

 receivers = attributes.get('receivers')
 if not receivers:
 raise Exception('Missing attribute(\'receivers\')')

 msg = MIMEMultipart.MIMEMultipart()
 msg['From'] = sender
 msg['To'] = COMMASPACE.join(receivers)
 msg['Date'] = formatdate(localtime=True)
 msg['Subject'] = attributes.get('subject') or 'ZTP Bootstrap'

 body = attributes.get('body')
 attachments = attributes.get('attachments') or list()
 commands = attributes.get('commands') or list()

 attributes.get('NODE').log_msg("Running commands: %s" % str(commands))
 if commands:
 body += '\nThe output from the following commmands have '\
 'been added as attachments:'
 for command in commands:
 filename = run_command(command, node)
 attachments.append(filename)
 body += '\n\t* %s (%s)' % (command, filename)

 attributes.get('NODE').log_msg("Collecting attachments: %s" % \
 str(attachments))
 if attachments:
 for filename in attachments:
 if os.path.exists(filename):
 filename = filename.strip()
 part = MIMEBase.MIMEBase('application', 'octet-stream')
 part.set_payload(open(filename, 'rb').read())
 Encoders.encode_base64(part)
 part.add_header('Content-Disposition',
 'attachment; filename=\'%s\'' %
 os.path.basename(filename))
 attributes.get('NODE').log_msg("Attaching %s" % filename)
 msg.attach(part)

 msg.attach(MIMEText(body))

 attributes.get('NODE').log_msg("Sending email using smarthost %s" % \
 smarthost)
 send_message(smarthost, sender, receivers, msg)

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_modules/actions/copy_file.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for actions.copy_file

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#pylint: disable=W0703,E1103

BACKUP_SUFFIX = '.backup'
PERSISTENT_DIR = '/mnt/flash/.ztp-files'
PERSISTENT_STORAGE = ['/mnt/flash/', '/mnt/usb1/', '/mnt/drive/',
 '/persist/local/', '/persyst/sys/']

import os
import shutil

def is_subdir(path, directory):
 return os.path.realpath(path).startswith(os.path.realpath(directory))

def url_persistent(url):
 for directory in PERSISTENT_STORAGE:
 if is_subdir(url, directory):
 return True
 return False

[docs]def main(attributes):
 '''Copies file to the switch.

 Copies file based on the values of 'src_url' and 'dst_url'
 attributes ('dst_url' should point to the destination folder).

 This action is NOT dual-supervisor compatible.

 Attributes:
 src_url: path to source file
 dst_url: path to destination
 mode: octal mode for destination path
 overwrite: replace|if-missing|backup (default: replace)

 'overwrite' values:
 * 'replace': the file is copied to the switch regardless
 of whether there is already a file with the same name at the
 destination;
 * 'if-missing': the file is copied to the switch only if
 there is not already a file with the same name at the
 destination; if there is, then the action is a no-op;
 * 'backup': the file is copied to the switch; if there is
 already another file at the destination, that file is renamed
 by appending the '.backup' suffix

 Special_attributes:
 NODE: API object - see documentation for details

 Example:
 ::

 -
 action: copy_file
 always_execute: true
 attributes:
 dst_url: /mnt/flash/
 mode: 777
 overwrite: if-missing
 src_url: files/automate/bgpautoinf.py
 name: "automate BGP peer interface config"

 '''

 node = attributes.get('NODE')
 src_url = attributes.get('src_url')

 if not src_url:
 raise Exception('Missing attribute(\'src_url\')')

 dst_url = attributes.get('dst_url')
 if not dst_url:
 raise Exception('Missing attribute(\'dst_url\')')

 name = os.path.basename(src_url)

 mode = attributes.get('mode')

 overwrite = attributes.get('overwrite')
 if not overwrite:
 overwrite = 'replace'

 if url_persistent(dst_url):
 dst_path = os.path.join(dst_url, name)

 if overwrite == 'if-missing':
 if os.path.exists(dst_path):
 node.log_msg('copy_file: nothing to do: %s '
 'already exists' % dst_path)
 return
 elif overwrite == 'backup':
 if os.path.exists(dst_path):
 backup_path = '%s%s' % (dst_path, BACKUP_SUFFIX)
 node.log_msg('copy_file: backing up %s '
 'to %s' % (dst_path, backup_path))
 shutil.copy(dst_path, backup_path)
 elif overwrite == 'replace':
 pass
 else:
 raise Exception('Erroneous \'overwrite\' value')

 try:
 os.makedirs(dst_url)
 except OSError:
 # file exists
 pass

 try:
 node.retrieve_url(src_url, dst_path)
 node.log_msg('copy_file: saving %s '
 'to %s' % (src_url, dst_path))
 if mode is not None:
 os.chmod(dst_path, int(str(mode), 8))
 except Exception as exc:
 raise Exception('Unable to retrieve file from URL (%s)' %
 exc)
 else:
 dst_path = os.path.join(PERSISTENT_DIR, name)

 lines = []
 if overwrite == 'if-missing':
 lines = lines + ['[! -f %s] && '
 'sudo cp %s %s' % (dst_url, dst_path,
 dst_url)]
 elif overwrite == 'backup':
 lines = lines + ['[-f %s] && '
 'sudo mv %s %s%s' % (dst_url, dst_url,
 dst_url, BACKUP_SUFFIX)]
 lines = lines + ['sudo cp %s %s' % (dst_path, dst_url)]
 elif overwrite == 'replace':
 lines = lines + ['sudo cp %s %s' % (dst_path, dst_url)]
 else:
 raise Exception('Erroneous \'overwrite\' value')

 if mode:
 lines = lines + ['sudo chmod %s %s' % (mode, dst_url)]

 try:
 os.makedirs(PERSISTENT_DIR)
 except OSError:
 # file exists
 pass

 try:
 file_path = '%s/%s' % (PERSISTENT_DIR, name)
 node.retrieve_url(src_url, file_path)
 node.log_msg('copy_file: saving %s '
 'to %s' % (src_url, file_path))
 except Exception as exc:
 raise Exception('Unable to retrieve file from URL (%s)' %
 exc)

 node.log_msg('copy_file: adding rc.eos lines: \n%s$' %
 '\n'.join(lines))
 node.append_rc_eos_lines(lines)

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_modules/actions/install_image.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for actions.install_image

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#pylint: disable=W0703

BOOT_CONFIG = '/mnt/flash/boot-config'

[docs]def main(attributes):
 '''Installs new software image.

 If the current software image is the same as the 'version'
 attribute value, then this action is a no-op. Otherwise, the
 action will replace the existing software image.

 For dual supervisor systems, the image on the active supervisor is
 used as reference.

 This action is dual-supervisor compatible.

 Attributes:
 url: path to source image file
 version: EOS version of new image file

 Special_attributes:
 NODE: API object - see documentation for details

 Example:
 ::

 -
 action: install_image
 always_execute: true
 attributes:
 url: files/images/vEOS.swi
 version: 4.13.5F
 name: "validate image"
 onstart: "Starting to install image"
 onsuccess: "SUCCESS: 4.13.5F installed"
 onfailure: "FAIL: IM nick@example.com for help"

 '''

 node = attributes.get('NODE')
 url = attributes.get('url')

 if not url:
 raise Exception('Missing attribute(\'url\')')

 version = attributes.get('version')
 if not version:
 raise Exception('Missing attribute(\'version\')')

 current_version = node.api_enable_cmds(['show version'])[0]['version']
 if current_version == version:
 return

 image = 'EOS-%s.swi' % version
 try:
 node.retrieve_url(url, '%s/%s' % (node.flash(), image))
 except Exception as exc:
 raise Exception('Unable to retrieve image file from URL (%s)' %
 exc)

 node.api_enable_cmds(['install source flash:%s' % image])

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_modules/actions/install_extension.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for actions.install_extension

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#pylint: disable=W0703,E1103

EXTENSIONS_DIR = '/mnt/flash/.extensions'
BOOT_EXTENSIONS = '/mnt/flash/boot-extensions'

import ast
import os

[docs]def main(attributes):
 '''Installs extension.

 If 'force' is
 set, then the dependency checks are overridden.

 This action is NOT dual-supervisor compatible.

 Attributes:
 url: path to source extension file
 force: ignore validation errors (default: false)

 Special_attributes:
 NODE: API object - see documentation for details

 Example:
 ::

 -
 action: install_image
 always_execute: true
 attributes:
 url: files/telemetry-1.0-1.rpm
 name: "Install Telemetry"

 '''

 node = attributes.get('NODE')
 url = attributes.get('url')

 if not url:
 raise Exception('Missing attribute(\'url\')')

 force = ast.literal_eval(
 str(attributes.get('force')))

 try:
 os.makedirs(EXTENSIONS_DIR)
 except OSError:
 # file exists
 pass

 name = url.split('/')[-1]
 try:
 node.retrieve_url(url, '%s/%s' % (EXTENSIONS_DIR, name))
 except Exception as exc:
 raise Exception('Unable to retrieve extension from URL (%s)' %
 exc)

 line = name
 if force:
 line = line + ' force'

 lines = []
 try:
 lines = [x.strip() for x in open(BOOT_EXTENSIONS).readlines()
 if x.strip()]
 except IOError:
 # file Missing
 pass

 open(BOOT_EXTENSIONS, 'w').write('\n'.join(lines + [line]))

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_images/ztpserver-seqdiag.png
Arista EOS ZTP Server DHCP Server
DHCP Request |

DHCP Response_(IP, name server, boot file)

HTTP GET boostrap
—_—
-—

HTTP GET config

Run

bootstiap Syslog Server XMPP Server

Start logging
Collectnode | HTTP POST nodes

details via 6AP| |
HTTP GET definition

HTTP GET action o
i

Load
definition

Run
action(s) HTTP GET resource

P

Reboot

_images/AttrsActions.png
Definition

Node

‘Atibutes

hostname ipaddress namsserver description username

_modules/actions/add_config.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for actions.add_config

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#pylint: disable=W0703,W0402,E1103

import os

TEMP_CONFIG = '/tmp/tmp-add-config'

[docs]def main(attributes):
 ''' Appends config section to startup-config.

 This action is dual-supervisor compatible.

 Attributes:
 url: path to source config/template
 substitution_mode: loose|strict (default: loose)
 variables: list of value substitutions

 Special_attributes:
 NODE: API object - see documentation for details

 Example:
 ::

 -
 action: add_config
 attributes:
 url: files/templates/ma1.template
 variables:
 ipaddress: allocate('mgmt_subnet')
 name: "configure ma1"
 onstart: "Starting to configure ma1"
 onsuccess: "SUCCESS: ma1 configure"
 onfailure: "FAIL: IM provisioning@example.com for help"

 '''

 node = attributes.get('NODE')
 url = attributes.get('url')

 if not url:
 raise Exception('Missing attribute(\'url\')')

 substitution_mode = attributes.get('substitution_mode', 'loose')
 if substitution_mode not in ['loose', 'strict']:
 raise Exception('Invalid option specified for substitution_mode '
 'attribute')

 try:
 node.retrieve_url(url, TEMP_CONFIG)
 except Exception as exc:
 raise Exception('Unable to retrieve config from URL (%s)' %
 exc)

 contents = open(TEMP_CONFIG, 'r').read()

 variables = attributes.get('variables')
 if not variables:
 variables = {}

 if not isinstance(variables, dict):
 node.log_msg('Variables: %s' % variables)
 raise Exception('Unable to perform variable substitution - '
 'invalid variables')

 contents = node.substitute(contents, variables,
 substitution_mode == 'strict')
 node.append_startup_config_lines(contents.split('\n'))

 # Only remove this in case everything else succeeded
 # for debugging purposes
 os.remove(TEMP_CONFIG)

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_images/Components.png
Topology Dynamic Resource om
Vaiidation Alocaton CustomAPL

A4 A4 Av4

s WP i WP

oo zps
*)7 Python WSG1

_images/LeafDefn.png
- name: standard leaf definition
definition: dc-1/pod-1/leaf_template
variables:

- not_spine: excludes('spine’
- any_spine: regex("spine\d+')
- any_pod: includes(’pod")
interfaces:
- Ethernet1: any_spine:Ethernet1/1

- Ethernet2: pod1-spine2:any
any: excludes('spinel’):Ethernetds
any: excludes('spine2'):Ethernetds
Ethernetds:

device: not_spine

port: eno
Ethernets0:

device: includes('spine’)

port: Ethernetse

_static/down-pressed.png

_static/arista_logo_jpg-11.jpg

_static/comment-close.png

_static/minus.png

_static/Components.png
Topology Dynamic Resource om
Vaiidation Alocaton CustomAPL

A4 A4 Av4

s WP i WP

oo zps
*)7 Python WSG1

_static/comment.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/ztpserver-seqdiag.png
Arista EOS ZTP Server DHCP Server
DHCP Request |

DHCP Response_(IP, name server, boot file)

HTTP GET boostrap
—_—
-—

HTTP GET config

Run

bootstiap Syslog Server XMPP Server

Start logging
Collectnode | HTTP POST nodes

details via 6AP| |
HTTP GET definition

HTTP GET action o
i

Load
definition

Run
action(s) HTTP GET resource

P

Reboot

_static/file.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/LeafDefn.png
- name: standard leaf definition
definition: dc-1/pod-1/leaf_template
variables:

- not_spine: excludes('spine’
- any_spine: regex("spine\d+')
- any_pod: includes(’pod")
interfaces:
- Ethernet1: any_spine:Ethernet1/1

- Ethernet2: pod1-spine2:any
any: excludes('spinel’):Ethernetds
any: excludes('spine2'):Ethernetds
Ethernetds:

device: not_spine

port: eno
Ethernets0:

device: includes('spine’)

port: Ethernetse

_static/plus.png

_static/AttrsActions.png
Definition

Node

‘Atibutes

hostname ipaddress namsserver description username

_modules/client/bootstrap.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for client.bootstrap

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
Bootstrap script
#
Written by:
EOS+, Arista Networks

import argparse
import datetime
import imp
import json
import jsonrpclib
import logging
import os
import os.path
import re
import sleekxmpp
import shutil
import socket
import subprocess
import sys
import time
import traceback
import urllib2
import urlparse

from collections import namedtuple
from logging.handlers import SysLogHandler
from string import Template #pylint: disable=W0402
from subprocess import PIPE
from urlparse import urlsplit, urlunsplit

Server will replace this value with the correct IP address/hostname
before responding to the bootstrap request.
SERVER = '$SERVER'

LOGGING_FACILITY = 'ztpbootstrap'
SYSLOG = '/dev/log'
DEFAULT_SYSLOG_PORT = 514

CONTENT_TYPE_PYTHON = 'text/x-python'
CONTENT_TYPE_HTML = 'text/html'
CONTENT_TYPE_OTHER = 'text/plain'
CONTENT_TYPE_JSON = 'application/json'

TEMP = '/tmp'

COMMAND_API_SERVER = 'localhost'
COMMAND_API_USERNAME = 'ztps'
COMMAND_API_PASSWORD = 'ztps-password'
COMMAND_API_PROTOCOL = 'http'

HTTP_STATUS_OK = 200
HTTP_STATUS_CREATED = 201
HTTP_STATUS_BAD_REQUEST = 400
HTTP_STATUS_NOT_FOUND = 404
HTTP_STATUS_CONFLICT = 409
HTTP_STATUS_INTERNAL_SERVER_ERROR = 500

FLASH = '/mnt/flash'

STARTUP_CONFIG = '%s/startup-config' % FLASH
RC_EOS = '%s/rc.eos' % FLASH

BOOT_EXTENSIONS = '%s/boot-extensions' % FLASH
BOOT_EXTENSIONS_FOLDER = '%s/.extensions' % FLASH

HTTP_TIMEOUT = 30

FLASH_FILES = []
RESTORE_FACTORY_FLASH = True

#pylint: disable=C0103
syslog_manager = None
xmpp_client = None
#pylint: enable=C0103

#---------------------------------XMPP------------------------
Uncomment this section in order to enable XMPP debug logging
logging.basicConfig(level=logging.DEBUG,
format='%(levelname)-8s %(message)s')

You will also have to comment out the following lines:
for logger in ['sleekxmpp.xmlstream.xmlstream',
 'sleekxmpp.basexmpp']:
 xmpp_log = logging.getLogger(logger)
 xmpp_log.addHandler(logging.NullHandler())
#---------------------------------XMPP------------------------

#---------------------------------SYSLOG----------------------
Comment out this section in order to enable syslog debug
logging
logging.raiseExceptions = False
#---------------------------------XMPP------------------------

------------------Utilities---------------------------------
def _exit(code):
 #pylint: disable=W0702

 # Wait for XMPP messages to drain
 time.sleep(3)

 if xmpp_client:
 try:
 xmpp_client.abort()
 except:
 pass

 if not RESTORE_FACTORY_FLASH:
 for path in [STARTUP_CONFIG, RC_EOS, BOOT_EXTENSIONS]:
 filename = path.split('/')[-1]
 if os.path.isfile(path):
 dst = '%s.ztp' % path
 log('Saving %s as %s...' % (filename, dst))

 if os.path.isfile(dst):
 os.remove(dst)

 shutil.move(path, dst)

 backup_path = url_path_join('/', TEMP,
 os.path.basename(filename))

 if os.path.isfile(backup_path):
 log('Recovering %s...' % path)
 shutil.move(backup_path, path)

 if os.path.isdir(BOOT_EXTENSIONS_FOLDER):
 dst = '%s.ztp' % BOOT_EXTENSIONS_FOLDER
 log('Saving %s as %s...' %
 (BOOT_EXTENSIONS_FOLDER.split('/')[-1],
 dst))

 if os.path.isdir(dst):
 shutil.rmtree(dst)

 shutil.move(BOOT_EXTENSIONS_FOLDER,
 '%s.ztp' % BOOT_EXTENSIONS_FOLDER)

 backup_path = url_path_join(
 '/', TEMP,
 os.path.basename(BOOT_EXTENSIONS_FOLDER))
 if os.path.isdir(backup_path):
 log('Recovering %s...' % BOOT_EXTENSIONS_FOLDER)
 shutil.move(backup_path, BOOT_EXTENSIONS_FOLDER)
 else:
 if code:
 for path in [x for x in all_files_and_dirs(FLASH)
 if x not in FLASH_FILES]:
 log('Deleting %s...' % path)
 if os.path.isdir(path):
 shutil.rmtree(path)
 else:
 try:
 os.remove(path)
 except OSError:
 # already removed
 pass

 sys.stdout.flush()
 sys.stderr.flush()

 #pylint: disable=W0212
 # Need to close background sleekxmpp threads as well
 os._exit(code)

SYSTEM_ID = None
XMPP_MSG_TYPE = None
def log_xmpp():
 return XMPP_MSG_TYPE == 'debug'

def log(msg, error=False, xmpp=None):
 if xmpp is None:
 xmpp = log_xmpp()

 timestamp = datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')
 xmpp_msg = '%s: %s - %s%s' % (SYSTEM_ID if SYSTEM_ID else 'N/A',
 timestamp,
 'ERROR: ' if error else '',
 msg)

 if xmpp and xmpp_client and xmpp_client.connected:
 xmpp_client.message(xmpp_msg)

 if SYSTEM_ID:
 syslog_msg = '%s: %s' % (SYSTEM_ID, msg)
 else:
 syslog_msg = msg

 if error:
 print 'ERROR: %s' % syslog_msg
 else:
 print syslog_msg

 if syslog_manager:
 if error:
 syslog_manager.log.error(syslog_msg)
 else:
 syslog_manager.log.info(syslog_msg)

def url_path_join(*parts):
 """Normalize URL parts and join them with a slash."""
 # pylint: disable=W0142
 schemes, netlocs, paths, queries, fragments = \
 zip(*(urlsplit(part) for part in parts))
 scheme = get_first_token(schemes)
 netloc = get_first_token(netlocs)
 path = '/'.join(x.strip('/') for x in paths if x)
 query = get_first_token(queries)
 fragment = get_first_token(fragments)
 return urlunsplit((scheme, netloc, path, query, fragment))

#pylint: disable=C0103
_ntuple_diskusage = namedtuple('usage', 'total used free')
#pylint: enable=C0103
def flash_usage():
 stats = os.statvfs(FLASH)
 free = stats.f_bavail * stats.f_frsize
 total = stats.f_blocks * stats.f_frsize
 used = (stats.f_blocks - stats.f_bfree) * stats.f_frsize
 return _ntuple_diskusage(total, used, free)

def flash_snapshot():
 #pylint: disable=W0603
 global FLASH_FILES
 FLASH_FILES = all_files_and_dirs(FLASH)

 for filename in [STARTUP_CONFIG, RC_EOS, BOOT_EXTENSIONS]:
 if os.path.isfile(filename):
 log('Backing up %s...' % filename)

 # Delete old folder in tmp
 dst = url_path_join('/', TEMP,
 os.path.basename(filename))
 if os.path.isfile(dst):
 os.remove(dst)

 shutil.move(filename, TEMP)

 if os.path.isdir(BOOT_EXTENSIONS_FOLDER):
 log('Backing up %s...' % BOOT_EXTENSIONS_FOLDER)

 # Delete old folder in /tmp
 dst = url_path_join('/', TEMP,
 os.path.basename(BOOT_EXTENSIONS_FOLDER))
 if os.path.isdir(dst):
 shutil.rmtree(dst)

 shutil.move(BOOT_EXTENSIONS_FOLDER, TEMP)

def get_first_token(sequence):
 return next((x for x in sequence if x), '')

def all_files_and_dirs(path):
 result = []
 for top, dirs, files in os.walk(path):
 result += [os.path.join(top, d) for d in dirs]
 result += [os.path.join(top, f) for f in files]

 return result
------------------Utilities---------------------------------

------------------4.12.x support----------------------------
def download_file(url, path):
 if not urlparse.urlsplit(url).scheme: #pylint: disable=E1103
 url = url_path_join(SERVER, url)

 log('Retrieving URL: %s' % url)

 url = urllib2.urlopen(url, timeout=HTTP_TIMEOUT)
 output_file = open(path, 'wb')
 output_file.write(url.read())
 output_file.close()

#pylint: disable=C0103
REQUESTS = 'requests-2.3.0'
REQUESTS_URL = url_path_join(SERVER, '/files/lib/', REQUESTS+'.tar.gz')
try:
 import requests
except ImportError:
 requests_url = '%s/%s.tar.gz' % (TEMP, REQUESTS)
 download_file(REQUESTS_URL, requests_url)
 cmd = 'sudo tar -xzvf %s -C /tmp;' \
 'cd %s/%s;' \
 'sudo python setup.py build;' \
 'sudo python setup.py install' % \
 (requests_url, TEMP, REQUESTS)
 res = os.system(cmd)
 if res:
 log('%s returned %s' % (cmd, res), error=True)
 _exit(1)
 import requests
#pylint: enable=C0103
------------------4.12.x support----------------------------

class ZtpError(Exception):
 pass

class ZtpActionError(ZtpError):
 pass

class ZtpUnexpectedServerResponseError(ZtpError):
 pass

class Attributes(object):

 def __init__(self, local_attr=None, special_attr=None):
 self.local_attr = local_attr if local_attr else []
 self.special_attr = special_attr if special_attr else []

 def get(self, attr, default=None):
 if attr in self.local_attr:
 return self.local_attr[attr]
 elif attr in self.special_attr:
 return self.special_attr[attr]
 else:
 return default

 def copy(self):
 attrs = dict()
 if self.special_attr:
 attrs = self.special_attr.copy()
 if self.local_attr:
 attrs.update(self.local_attr)
 return attrs

[docs]class Node(object):
 #pylint: disable=R0201

 '''Node object which can be used by actions via:
 attributes.get('NODE')

 Attributes:
 client (jsonrpclib.Server): jsonrpclib connect to Command API engine
 '''

 def __init__(self, server):
 self.server_ = server

 Node._enable_api()

 url = '%s://%s:%s@%s/command-api' % (COMMAND_API_PROTOCOL,
 COMMAND_API_USERNAME,
 COMMAND_API_PASSWORD,
 COMMAND_API_SERVER)
 self.client = jsonrpclib.Server(url)

 try:
 self.api_enable_cmds([])
 except socket.error:
 raise ZtpError('unable to enable eAPI')

 # Workaround for BUG89374
 try:
 self._disable_copp()
 except jsonrpclib.jsonrpc.ProtocolError as err:
 log('WARNING: unable to disable COPP: %s '
 '(platform/EOS version might not support this feature)' %
 err)

 global SYSTEM_ID #pylint: disable=W0603
 SYSTEM_ID = \
 self.api_enable_cmds(['show version'])[0]['serialNumber']

 @classmethod
 def _cli_enable_cmd(cls, cli_cmd):
 bash_cmd = ['FastCli', '-p', '15', '-A', '-c', cli_cmd]
 proc = subprocess.Popen(bash_cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE)
 (out, err) = proc.communicate()
 return (proc.returncode, out, err) #pylint: disable=E1101

 @classmethod
 def _cli_config_cmds(cls, cmds):
 cls._cli_enable_cmd('\n'.join(['configure'] + cmds))

 @classmethod
 def _enable_api(cls):
 cls._cli_config_cmds(['username %s secret %s privilege 15' %
 (COMMAND_API_USERNAME,
 COMMAND_API_PASSWORD),
 'management api http-commands',
 'no protocol https',
 'protocol %s' % COMMAND_API_PROTOCOL,
 'no shutdown'])

 _, out, _ = cls._cli_enable_cmd('show management api http-commands |'
 ' grep running')
 retries = 3
 while not out and retries:
 log('Waiting for CommandAPI to be enabled...')
 time.sleep(1)
 retries = retries - 1
 _, out, _ = cls._cli_enable_cmd(
 'show management api http-commands | grep running')

 def _disable_copp(self):
 # COPP does not apply to vEOS or EOS-4.11.x and earlier
 if (self.system()['model'] != 'vEOS' and
 len(self.system()['version'].split('.')) > 2 and
 int(self.system()['version'].split('.')[1]) < 12):
 self.api_config_cmds(['control-plane',
 'no service-policy input copp-system-policy'])

 def _has_rc_eos(self):
 return os.path.isfile(RC_EOS)

 def _append_lines(self, filename, lines):
 with open(filename, 'a') as output:
 output.write('\n')
 output.write('\n'.join(lines))

 @classmethod
[docs] def bash_cmds(cls, cmds):
 '''Executes bash commands in order - stops on first failure.

 Args:
 cmds: list of bash commands

 Returns:
 cmd: first failing command (None otherwise)
 code: exit code for first failing command (None otherwise)
 out: stdout for first failing command (None otherwise)
 err: stderr for first failing command (None otherwise)
 '''

 for bash_cmd in cmds:
 proc = subprocess.Popen(bash_cmd, stdin=PIPE,
 stdout=PIPE, stderr=PIPE,
 shell=True)
 code = proc.returncode #pylint: disable=E1101
 (out, err) = proc.communicate()
 if code or err:
 return (bash_cmd, code, out, err)
 else:
 print out

 return (None, None, None, None)

 @classmethod
[docs] def substitute(cls, template, substitutions, strict=True):
 '''Perform variable substitution on a config template.

 Args:
 template (string): EOS configuration template
 substitutions (dict): set of substitutions for the template
 strict (bool, optional): If true, method will raise Exception
 when template variables are missing
 from 'substitutions'.

 Returns:
 string: template string with variable substitution
 '''
 try:
 if strict:
 return Template(template).substitute(substitutions)
 else:
 return Template(template).safe_substitute(substitutions)
 except KeyError as exc:
 raise Exception('Unable to perform variable substitution - '
 '\'%s\' missing from list of substitutions' %
 exc.message)

[docs] def api_enable_cmds(self, cmds, text_format=False):
 '''Run CLI commands via Command API, starting from enable mode.

 Commands are ran in order.

 Args:
 cmds (list): List of CLI commands.
 text_format (bool, optional): If true, Command API request will run
 in text mode (instead of JSON).

 Returns:
 list: List of Command API results corresponding to the
 input commands.
 '''
 req_format = 'text' if text_format else 'json'
 result = self.client.runCmds(1, ['enable'] + cmds, req_format)

 if text_format:
 return [x.values()[0] for x in result if x.values()][1:]
 else:
 return result[1:]

[docs] def api_config_cmds(self, cmds):
 '''Run CLI commands via Command API, starting from config mode.

 Commands are ran in order.

 Args:
 cmds (list): List of CLI commands.

 Returns:
 list: List of Command API results corresponding to the
 input commands.
 '''
 return self.api_enable_cmds(['configure'] + cmds)[1:]

[docs] def system(self):
 '''Get system information.

 Returns:
 dict: System information

 Format::

 {'model': <MODEL>,
 'version': <EOS_VERSION>,
 'systemmac': <SYSTEM_MAC>,
 'serialnumber': <SERIAL_NUMBER>}

 '''

 result = {}
 info = self.api_enable_cmds(['show version'])[0]

 result['model'] = info['modelName']
 result['version'] = info['version']
 result['systemmac'] = info['systemMacAddress']
 result['serialnumber'] = info['serialNumber']

 return result

[docs] def neighbors(self):
 '''Get neighbors.

 Returns:
 dict: LLDP neighbor

 Format::

 {'neighbors': {<LOCAL_PORT>:
 [{'device': <REMOTE_DEVICE>,
 'port': <REMOTE_PORT>}, ...],
 ...}}

 '''

 result = {}
 info = self.api_enable_cmds(['show lldp neighbors'])[0]
 result['neighbors'] = {}
 for entry in info['lldpNeighbors']:
 neighbor = {}
 neighbor['device'] = entry['neighborDevice']
 neighbor['port'] = entry['neighborPort']
 if entry['port'] in result['neighbors']:
 result['neighbors'][entry['port']] += [neighbor]
 else:
 result['neighbors'][entry['port']] = [neighbor]
 return result

[docs] def details(self):
 '''Get details.

 Returns:
 dict: System details

 Format::

 {'model': <MODEL>,
 'version': <EOS_VERSION>,
 'systemmac': <SYSTEM_MAC>,
 'serialnumber': <SERIAL_NUMBER>,
 'neighbors': <NEIGHBORS> # see neighbors()
 }

 '''

 return dict(self.system().items() +
 self.neighbors().items())

[docs] def has_startup_config(self):
 '''Check whether startup-config is configured or not.

 Returns:
 bool: True is startup-config is configured; false otherwise.
 '''
 return os.path.isfile(STARTUP_CONFIG) and \
 open(STARTUP_CONFIG).read().strip()

[docs] def append_startup_config_lines(self, lines):
 '''Add lines to startup-config.

 Args:
 lines (list): List of CLI commands
 '''
 self._append_lines(STARTUP_CONFIG, lines)

[docs] def append_rc_eos_lines(self, lines):
 '''Add lines to rc.eos.

 Args:
 lines (list): List of bash commands
 '''
 if not self._has_rc_eos():
 lines = ['#!/bin/bash'] + lines
 self._append_lines(RC_EOS, lines)

[docs] def log_msg(self, msg, error=False):
 '''Log message via configured syslog/XMPP.

 Args:
 msg (string): Message
 error (bool, optional): True if msg is an error; false otherwise.
 '''
 log(msg, error)

[docs] def rc_eos(self):
 '''Get rc.eos path.

 Returns:
 string: rc.eos path
 '''
 return RC_EOS

[docs] def flash(self):
 '''Get flash path.

 Returns:
 string: flash path
 '''
 return FLASH

[docs] def startup_config(self):
 '''Get startup-config path.

 Returns:
 string: startup-config path
 '''
 return STARTUP_CONFIG

[docs] def retrieve_url(self, url, path):
 '''Download resource from server.

 If 'path' is somewhere on flash and 'url' points back to
 SERVER, then the client will request the metadata for
 the resource from the server (in order to check whether there
 is enogh disk space available). If 'url' points to a different
 server, then the 'content-length' header will be used for the
 disk space checks.

 Raises:
 ZtpError: resource cannot be retrieved:
 - metadata cannot be retrieved from server OR
 - metadata is inconsistent with request OR
 - disk space on flash is insufficient OR
 - file cannot be written to disk

 Returns:
 string: startup-config path
 '''
 self.server_.get_resource(url, path)

 @classmethod
[docs] def server_address(cls):
 '''Get ZTP Server URL.

 Returns:
 string: ZTP Server URL.
 '''
 return SERVER

class SyslogManager(object):

 def __init__(self):
 self.log = logging.getLogger('ztpbootstrap')
 self.log.setLevel(logging.DEBUG)
 self.formatter = logging.Formatter('ZTPS - %(levelname)s: '
 '%(message)s')

 # syslog to localhost enabled by default
 self._add_syslog_handler()

 def _add_handler(self, handler, level=None):
 if level is None:
 level = 'DEBUG'

 try:
 handler.setLevel(logging.getLevelName(level))
 except ValueError:
 log('SyslogManager: unknown logging level (%s) - using '
 'log.DEFAULT instead' % level, error=True)
 handler.setLevel(logging.DEBUG)

 handler.setFormatter(self.formatter)
 self.log.addHandler(handler)

 def _add_syslog_handler(self):
 log('SyslogManager: adding localhost handler')
 self._add_handler(SysLogHandler(address=SYSLOG))

 def _add_file_handler(self, filename, level=None):
 log('SyslogManager: adding file handler (%s - level:%s)' %
 (filename, level))
 self._add_handler(logging.FileHandler(filename), level)

 def _add_remote_syslog_handler(self, host, port, level=None):
 log('SyslogManager: adding remote handler (%s:%s - level:%s)' %
 (host, port, level))
 self._add_handler(SysLogHandler(address=(host, port)), level)

 def add_handlers(self, handler_config):
 for entry in handler_config:
 match = re.match('^file:(.+)',
 entry['destination'])
 if match:
 self._add_file_handler(match.groups()[0],
 entry['level'])
 else:
 match = re.match('^(.+):(.+)',
 entry['destination'])
 if match:
 self._add_remote_syslog_handler(match.groups()[0],
 int(match.groups()[1]),
 entry['level'])
 else:
 self._add_remote_syslog_handler(entry['destination'],
 DEFAULT_SYSLOG_PORT,
 entry['level'])

class Server(object):

 def __init__(self):
 pass

 @classmethod
 def _http_request(cls, path=None, method='get', headers=None,
 payload=None, files=None):
 if headers is None:
 headers = {}
 if files is None:
 files = []

 request_files = []
 for entry in files:
 request_files[entry] = open(entry,'rb')

 if not urlparse.urlsplit(path).scheme: #pylint: disable=E1103
 full_url = url_path_join(SERVER, path)
 else:
 full_url = path

 try:
 if method == 'get':
 log('GET %s' % full_url)
 response = requests.get(full_url,
 data=json.dumps(payload),
 headers=headers,
 files=request_files,
 timeout=HTTP_TIMEOUT)
 elif method == 'post':
 log('POST %s' % full_url)
 response = requests.post(full_url,
 data=json.dumps(payload),
 headers=headers,
 files=request_files,
 timeout=HTTP_TIMEOUT)
 else:
 log('Unknown method %s' % method,
 error=True)
 except requests.exceptions.ConnectionError:
 raise ZtpError('server connection error')

 return response

 def _get_request(self, url):
 # resource or action
 headers = {'content-type': CONTENT_TYPE_HTML}
 result = self._http_request(url,
 headers=headers)
 log('Server response to GET request: status=%s' % result.status_code)

 return (result.status_code,
 result.headers['content-type'].split(';')[0],
 result)

 def _save_file_contents(self, contents, path, url=None):
 if path.startswith(FLASH):
 if not url:
 raise ZtpError('attempting to save file to %s, but cannot'
 'retrieve content metadata' % path)

 size = 0
 if 'content-length' in contents.headers:
 size = int(contents.headers['content-length'])

 if url.startswith(SERVER):
 _, _, metadata = self.get_metadata(url)
 metadata = metadata.json()
 if size and metadata['size'] != size:
 raise ZtpError('"content-length" for %s does not match '
 'metadata: %s != %s' %
 (url, metadata['size'], size))

 usage = flash_usage()

 free_space = usage.free
 potential_used_space = size + usage.used
 if os.path.isfile(path):
 size = os.path.getsize(path)
 free_space += size
 potential_used_space -= size

 if (size > free_space):
 raise ZtpError('not enough memory on flash for saving %s to %s '
 '(free: %s bytes, required: %s bytes)' %
 (url, path, free_space, size))
 elif (potential_used_space > 0.9 * usage.total):
 percent = (size + usage.used) * 100.0 / usage.total
 log('WARNING: flash disk usage will exceeed %s%% after '
 'saving %s to %s' % (percent, url, path))

 log('Writing %s...' % path)

 # Save contents to file
 try:
 with open(path, 'wb') as result:
 for chunk in contents.iter_content(chunk_size=1024):
 if chunk:
 result.write(chunk)
 result.close()
 except IOError as err:
 raise ZtpError('unable to write %s: %s' % (path, err))

 # Set permissions
 os.chmod(path, 0777)

 def get_config(self):
 headers = {'content-type': CONTENT_TYPE_HTML}
 result = self._http_request('bootstrap/config',
 headers=headers)

 log('Server response to GET config: contents=%s' % result.json())

 status = result.status_code
 content = result.headers['content-type'].split(';')[0]
 if(status != HTTP_STATUS_OK or
 content != CONTENT_TYPE_JSON):
 raise ZtpUnexpectedServerResponseError(
 'unexpected reponse from server (status=%s; content-type=%s)' %
 (status, content))

 return (status, content, result)

 def post_nodes(self, node):
 headers = {'content-type': CONTENT_TYPE_JSON}
 result = self._http_request('nodes',
 method='post',
 headers=headers,
 payload=node)
 location = result.headers['location'] \
 if 'location' in result.headers \
 else None
 log('Server response to POST nodes: status=%s, location=%s' %
 (result.status_code, location))

 status = result.status_code
 content = result.headers['content-type'].split(';')[0]
 if(status not in [HTTP_STATUS_CREATED,
 HTTP_STATUS_BAD_REQUEST,
 HTTP_STATUS_CONFLICT] or
 content != CONTENT_TYPE_HTML):
 raise ZtpUnexpectedServerResponseError(
 'unexpected reponse from server (status=%s; content-type=%s)' %
 (status, content))
 elif status == HTTP_STATUS_BAD_REQUEST:
 raise ZtpError('node not found on server (status=%s)' % status)

 return (status, content, location)

 def get_definition(self, location):
 headers = {'content-type': CONTENT_TYPE_HTML}
 result = self._http_request(location,
 headers=headers)

 if result.status_code == HTTP_STATUS_OK:
 log('Server response to GET definition: status=%s, contents=%s' %
 (result.status_code, result.json()))
 else:
 log('Server response to GET definition: status=%s' %
 result.status_code)

 status = result.status_code
 content = result.headers['content-type'].split(';')[0]
 if not ((status == HTTP_STATUS_OK and
 content == CONTENT_TYPE_JSON) or
 (status == HTTP_STATUS_BAD_REQUEST and
 content == CONTENT_TYPE_HTML)):
 raise ZtpUnexpectedServerResponseError(
 'unexpected reponse from server (status=%s; content-type=%s)' %
 (status, content))
 elif status == HTTP_STATUS_BAD_REQUEST:
 raise ZtpError('server-side topology check failed (status=%s)' %
 status)

 return (status, content, result)

 def get_action(self, action):
 status, content, action_response = \
 self._get_request('actions/%s' % action)

 if not ((status == HTTP_STATUS_OK and
 content == CONTENT_TYPE_PYTHON) or
 (status == HTTP_STATUS_NOT_FOUND and
 content == CONTENT_TYPE_HTML)):
 raise ZtpUnexpectedServerResponseError(
 'unexpected reponse from server (status=%s; content-type=%s)' %
 (status, content))
 elif status == HTTP_STATUS_NOT_FOUND:
 raise ZtpError('action not found on server (status=%s)' % status)

 filename = os.path.join(TEMP, action)
 self._save_file_contents(action_response, filename)
 return filename

 def get_metadata(self, url):
 if urlparse.urlsplit(url).scheme: #pylint: disable=E1103
 regex = re.compile(SERVER, re.IGNORECASE)
 if regex.match(url):
 url = re.sub(regex, '', url)
 url = url_path_join(SERVER, '/meta', url)
 else:
 aux = [x for x in url.split('/') if x]
 url = '/'.join(['meta'] + aux)

 headers = {'content-type': CONTENT_TYPE_HTML}
 result = self._http_request(url,
 headers=headers)
 log('Server response to GET meta: contents=%s' % result.json())

 status = result.status_code
 content = result.headers['content-type'].split(';')[0]

 if not ((status == HTTP_STATUS_OK and
 content == CONTENT_TYPE_JSON) or
 (status == HTTP_STATUS_NOT_FOUND and
 content == CONTENT_TYPE_HTML) or
 (status == HTTP_STATUS_INTERNAL_SERVER_ERROR and
 content == CONTENT_TYPE_HTML)):
 raise ZtpUnexpectedServerResponseError(
 'unexpected reponse from server (status=%s; content-type=%s)' %
 (status, content))
 elif status == HTTP_STATUS_NOT_FOUND:
 raise ZtpError('metadata not found on server (status=%s)' %
 status)
 elif status == HTTP_STATUS_INTERNAL_SERVER_ERROR:
 raise ZtpError(
 'unable to retrieve metadata from server (status=%s)' %
 status)

 return (status, content, result)

 def get_resource(self, url, path):
 if not urlparse.urlsplit(url).scheme: #pylint: disable=E1103
 url = url_path_join(SERVER, url)

 status, content, response = self._get_request(url)

 if url.startswith(SERVER):
 if not ((status == HTTP_STATUS_OK and
 content == CONTENT_TYPE_OTHER) or
 (status == HTTP_STATUS_NOT_FOUND and
 content == CONTENT_TYPE_HTML)):
 raise ZtpUnexpectedServerResponseError(
 'unexpected reponse from server for %s '
 '(status=%s; content-type=%s)' %
 (url, status, content))
 else:
 if not (status == HTTP_STATUS_OK or
 status == HTTP_STATUS_NOT_FOUND):
 raise ZtpUnexpectedServerResponseError(
 'unexpected reponse from server for %s '
 '(status=%s; content-type=%s)' %
 (url, status, content))

 if status == HTTP_STATUS_NOT_FOUND:
 raise ZtpError('resource %s not found on server (status=%s)' %
 (url, status))

 self._save_file_contents(response, path, url)

class XmppClient(sleekxmpp.ClientXMPP):
 #pylint: disable=W0613, R0904, R0201, R0924

 def __init__(self, user, domain, password, rooms,
 nick, xmpp_server, xmpp_port):

 self.xmpp_jid = '%s@%s' % (user, domain)
 self.connected = False

 try:
 sleekxmpp.ClientXMPP.__init__(self, self.xmpp_jid,
 password)
 except sleekxmpp.jid.InvalidJID:
 log('Unable to connect XMPP client because of invalid jid: %s' %
 self.xmpp_jid, xmpp=False)
 return

 self.xmpp_nick = nick
 self.xmpp_rooms = rooms

 self.xmpp_rooms = []
 for room in rooms:
 self.xmpp_rooms.append('%s@conference.%s' % (room, domain))

 self.add_event_handler('session_start', self._session_connected)
 self.add_event_handler('connect', self._session_connected)
 self.add_event_handler('disconnected', self._session_disconnected)

 # Multi-User Chat
 self.register_plugin('xep_0045')
 # XMPP Ping
 self.register_plugin('xep_0199')
 # Service Discovery
 self.register_plugin('xep_0030')

 log('XmppClient connecting to server...', xmpp=False)
 if xmpp_server != None:
 self.connect((xmpp_server, xmpp_port), reattempt=False)
 else:
 self.connect(reattempt=False)

 self.process(block=False)

 retries = 3
 while not self.connected and retries:
 # Wait to connect
 time.sleep(1)
 retries -= 1

 def _session_connected(self, event):
 log('XmppClient: Session connected (%s)' % self.xmpp_jid,
 xmpp=False)
 self.send_presence()
 self.get_roster()

 self.connected = True

 # Joining rooms
 for room in self.xmpp_rooms:
 self.plugin['xep_0045'].joinMUC(room,
 self.xmpp_nick,
 wait=True)
 log('XmppClient: Joined room %s as %s' %
 (room, self.xmpp_nick),
 xmpp=False)

 def _session_disconnected(self, event):
 log('XmppClient: Session disconnected (%s)' % self.xmpp_jid,
 xmpp=False)
 self.connected = False

 def message(self, message):
 for room in self.xmpp_rooms:
 self.send_message(mto=room,
 mbody=message,
 mtype='groupchat')

def apply_config(config, node):
 global xmpp_client #pylint: disable=W0603

 log('Applying server config')

 # XMPP not configured yet
 xmpp_config = config.get('xmpp', {})

 global XMPP_MSG_TYPE #pylint: disable=W0603
 XMPP_MSG_TYPE = xmpp_config.get('msg_type', 'debug')
 if XMPP_MSG_TYPE not in ['debug', 'info']:
 log('XMPP configuration failed because of unexpected \'msg_type\': '
 '%s not in [\'debug\', \'info\']' % XMPP_MSG_TYPE, error=True,
 xmpp=False)
 else:
 if xmpp_config:
 log('Configuring XMPP', xmpp=False)
 if ('username' in xmpp_config and
 'domain' in xmpp_config and
 'password' in xmpp_config and
 'rooms' in xmpp_config and
 xmpp_config['rooms']):
 nick = node.system()['serialnumber']
 if not nick:
 # vEOS might not have a serial number configured
 nick = node.system()['systemmac']
 xmpp_client = XmppClient(xmpp_config['username'],
 xmpp_config['domain'],
 xmpp_config['password'],
 xmpp_config['rooms'],
 nick,
 xmpp_config.get('server', None),
 xmpp_config.get('port', 5222))
 else:
 # XMPP not configured yet
 log('XMPP configuration failed because server response '
 'is missing config details',
 error=True, xmpp=False)
 else:
 log('No XMPP configuration received from server', xmpp=False)

 log_config = config.get('logging', [])
 if log_config:
 log('Configuring syslog')
 syslog_manager.add_handlers(log_config)
 else:
 log('No XMPP configuration received from server')

def execute_action(server, action_details, special_attr):
 action = action_details['action']

 description = ''
 if 'description'in action_details:
 description = '(%s)' % action_details['description']

 if action not in sys.modules:
 log('Downloading action %s%s' % (action, description))
 filename = server.get_action(action)

 log('Executing action %s' % action)
 if 'onstart' in action_details:
 log('Action %s: %s' % (action, action_details['onstart']),
 xmpp=True)

 try:
 if action in sys.modules:
 module = sys.modules[action]
 else:
 module = imp.load_source(action, filename)

 local_attr = action_details['attributes'] \
 if 'attributes' in action_details \
 else []
 try:
 module.main(Attributes(local_attr, special_attr))
 except Exception as exc:
 raise ZtpActionError(exc)
 log('Action executed succesfully (%s)' % action)
 if 'onsuccess' in action_details:
 log('Action %s: %s' % (action, action_details['onsuccess']),
 xmpp=True)
 except Exception as err: #pylint: disable=W0703
 if 'onfailure' in action_details:
 log('Action %s: %s' % (action, action_details['onfailure']),
 xmpp=True)
 raise ZtpActionError('executing action failed (%s): %s' % (action, err))

def main():
 #pylint: disable=W0603,R0912,R0915
 global syslog_manager, RESTORE_FACTORY_FLASH

 usage = 'bootstrap [options]'
 parser = argparse.ArgumentParser(usage=usage)
 parser.add_argument('--no-flash-factory-restore', '-n',
 action='store_true',
 help='Do NOT restore flash config to factory default')
 args = parser.parse_args()
 RESTORE_FACTORY_FLASH = not args.no_flash_factory_restore

 flash_snapshot()

 syslog_manager = SyslogManager()
 server = Server()

 # Retrieve and apply logging/XMPP configuration from server
 # XMPP not configured yet
 log('Retrieving config from server', xmpp=False)
 _, _, config = server.get_config()

 # Creating node
 node = Node(server)

 # XMPP not configured yet
 log('Config retrieved from server', xmpp=False)
 apply_config(config.json(), node)

 # Checking node on server
 # XMPP not configured yet
 log('Collecting node information', xmpp=False)
 _, _, location = server.post_nodes(node.details())

 # Get definition
 _, _, definition = server.get_definition(location)

 # Execute actions
 definition = definition.json()

 if 'actions' not in definition:
 raise ZtpError('\'actions\' section missing from definition')

 definition_name = definition.get('name', '')
 log('Applying definition %s' % definition_name)

 special_attr = {}
 special_attr['NODE'] = node
 for details in definition['actions']:
 execute_action(server, details, special_attr)

 log('Definition %s applied successfully' % definition_name)

 # Check for startup-config
 if not node.has_startup_config():
 raise ZtpError('startup configuration is missing at the end of the '
 'bootstrap process')

 log('ZTP bootstrap completed successfully!')

 _exit(0)

if __name__ == '__main__':
 try:
 main()
 except ZtpError as exception:
 log('''Bootstrap process failed:
 %s''' % str(exception),
 error=True)
 _exit(1)
 except KeyboardInterrupt:
 log('Bootstrap process keyboard-interrupted',
 error=True)
 log(sys.exc_info()[0])
 log(traceback.format_exc())
 _exit(1)
 except Exception, exception:
 log('''Bootstrap process failed because of unknown exception:
 %s''' %
 exception, error=True)
 log(sys.exc_info()[0])
 log(traceback.format_exc())
 _exit(1)

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_modules/actions/install_cli_plugin.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for actions.install_cli_plugin

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#pylint: disable=W0703,E1103

CLI_PLUGIN_DIR = '/usr/lib/python2.7/site-packages/CliPlugin'
PERSISTENT_PLUGIN_DIR = '/mnt/flash/.ztp-plugins'

import os

[docs]def main(attributes):
 '''Installs CliPlugin.

 This action is NOT dual-supervisor compatible.

 Attributes:
 url: path to the CliPlugin

 Special_attributes:
 NODE: API object - see documentation for details

 Example:
 ::

 -
 action: install_image
 always_execute: true
 attributes:
 url: files/my_cli_plugin
 name: "install cli plugin"

 '''

 node = attributes.get('NODE')
 url = attributes.get('url')

 if not url:
 raise Exception('Missing attribute(\'url\')')

 try:
 os.makedirs(PERSISTENT_PLUGIN_DIR)
 except OSError:
 # file exists
 pass

 name = url.split('/')[-1]
 try:
 node.retrieve_url(url, '%s/%s' %
 (PERSISTENT_PLUGIN_DIR, name))
 except Exception as exc:
 raise Exception('Unable to retrieve CliPlugin from URL (%s)' %
 exc)

 lines = ['sudo cp %s/%s %s' % (PERSISTENT_PLUGIN_DIR,
 name,
 CLI_PLUGIN_DIR)]

 node.append_rc_eos_lines(lines)

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 All modules for which code is available

		actions.add_config

		actions.copy_file

		actions.install_cli_plugin

		actions.install_extension

		actions.install_image

		actions.replace_config

		actions.run_bash_script

		actions.run_cli_commands

		actions.send_email

		client.bootstrap

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_modules/actions/replace_config.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for actions.replace_config

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#pylint: disable=W0703,E1103

[docs]def main(attributes):
 '''Replaces /mnt/flash/startup-config with new file.

 This action is dual-supervisor compatible.

 Attributes:
 url: path to source config/template

 Special_attributes:
 NODE: API object - see documentation for details

 Example:
 ::

 -
 action: replace_config
 attributes:
 url: files/configs/tor-startup-config
 name: "tor config"
 '''

 node = attributes.get('NODE')
 url = attributes.get('url')

 if not url:
 raise Exception('Missing attribute(\'url\')')

 try:
 node.retrieve_url(url, node.startup_config())
 except Exception as exc:
 raise Exception('Unable to retrieve config from URL (%s)' %
 exc.message)

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_modules/actions/run_cli_commands.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for actions.run_cli_commands

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#pylint: disable=W0703,E1103

import os

TEMP_CONFIG = '/tmp/tmp-run-commands'

[docs]def main(attributes):
 ''' Runs a set of EOS commands, starting from enable mode.

 This action is dual-supervisor compatible.

 Attributes:
 url: path to source command list/template
 variables (optional):
 list of value substitutions (for a template)

 Special_attributes:
 NODE: API object - see documentation for details

 Example:
 ::

 -
 action: run_cli_commands
 attributes:
 url: files/templates/ma1.template
 variables:
 ipaddress: allocate('mgmt_subnet')
 name: 'configure ma1'
 '''

 node = attributes.get('NODE')
 url = attributes.get('url')

 if not url:
 raise Exception('Missing attribute(\'url\')')

 try:
 node.retrieve_url(url, TEMP_CONFIG)
 except Exception as exc:
 raise Exception('Unable to retrieve config from URL (%s)' %
 exc)

 contents = open(TEMP_CONFIG, 'r').read()

 variables = attributes.get('variables')
 if not variables:
 variables = {}

 if not isinstance(variables, dict):
 node.log_msg('Variables: %s' % variables)
 raise Exception('Unable to perform variable substitution - '
 'invalid variables')

 contents = node.substitute(contents, variables)
 commands = [x for x in contents.split('\n') if x]

 try:
 node.api_enable_cmds(commands,
 text_format=True)
 except Exception as exc:
 raise Exception('Running CLI commands %s failed: %s' %
 (commands, exc.message))

 # Only remove this in case everything else succeeded
 # for debugging purposes
 os.remove(TEMP_CONFIG)

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

_modules/actions/run_bash_script.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		ZTPServer 1.3.2 documentation »

 		Module code »

 Source code for actions.run_bash_script

#!/usr/bin/env python
#
Copyright (c) 2015, Arista Networks, Inc.
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Arista Networks nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARISTA NETWORKS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#pylint: disable=W0703,E1103

import os

TEMP_FILE = '/tmp/tmp-run-script'

[docs]def main(attributes):
 ''' Runs a script in EOS from bash.

 This action is dual-supervisor compatible.

 Attributes:
 url: path to source script/template
 variables (optional):
 list of value substitutions (for a script template)

 Special_attributes:
 NODE: API object - see documentation for details

 Example:
 ::

 -
 action: run_bash_script
 attributes:
 url: files/scripts/install_script
 variables:
 version: 1.2.3
 name: 'install temp package'
 '''

 node = attributes.get('NODE')
 url = attributes.get('url')

 if not url:
 raise Exception('Missing attribute(\'url\')')

 try:
 node.retrieve_url(url, TEMP_FILE)
 except Exception as exc:
 raise Exception('Unable to retrieve config from URL (%s)' %
 exc)

 exec_file = open(TEMP_FILE, 'r')
 contents = exec_file.read()
 exec_file.close()

 variables = attributes.get('variables')
 if not variables:
 variables = {}

 if not isinstance(variables, dict):
 node.log_msg('Variables: %s' % variables)
 raise Exception('Unable to perform variable substitution - '
 'invalid variables')

 contents = node.substitute(contents, variables)

 exec_file = open(TEMP_FILE, 'w')
 exec_file.write(contents)
 exec_file.close()

 os.chmod(TEMP_FILE, 0777)
 (cmd, code, out, err) = node.bash_cmds([TEMP_FILE])

 if code or err:
 raise Exception('Running %s in bash failed '
 'return_code=%s, stdout=%s, stderr=%s)' %
 (cmd, code, out, err))

 # Only remove this in case everything else succeeded
 # for debugging purposes
 os.remove(TEMP_FILE)

 © Copyright 2015, Arista Networks.
 Last updated on Mar 25, 2015.
 Created using Sphinx 1.2.2.

