
ZTPServer Documentation
Release 1.3.2

Arista Networks

August 11, 2015

Contents

1 Highlights 3

2 Features 5
2.1 Overview . 5
2.2 Installation . 11
2.3 Startup . 15
2.4 Configuration . 17
2.5 Examples . 31
2.6 ZTPServer Cookbook . 37
2.7 Tips and tricks . 96
2.8 Internals . 99
2.9 Glossary of terms . 114
2.10 Support . 115
2.11 Troubleshooting . 126
2.12 License . 128

HTTP Routing Table 131

Python Module Index 133

i

ii

ZTPServer Documentation, Release 1.3.2

ZTPServer provides a bootstrap environment for Arista EOS based products. It is written mostly in Python and
leverages standard protocols like DHCP (for boot functions), HTTP (for bi-directional transport), XMPP and syslog
(for logging). Most of the configuration files are YAML based.

This open source project is maintained by the Arista Networks EOS+ services organization.

Contents 1

http://arista.com/

ZTPServer Documentation, Release 1.3.2

2 Contents

CHAPTER 1

Highlights

• Extends the basic capability of EOS’s zero-touch provisioning feature in order to allow more robust provisioning
activities

• Is extensible, for easy integration into various network environments

• Can be run natively in EOS or any Linux server

• Arista EOS+ led community open source project

3

ZTPServer Documentation, Release 1.3.2

4 Chapter 1. Highlights

CHAPTER 2

Features

• Dynamic startup-config generation and automatic install

• Image and file system validation and standardization

• Connectivity validation and topology based auto-provisioning

• Config and device templates with dynamic resource allocation

• Zero-touch replacement and upgrade capabilities

• User extensible actions

• Email, XMPP, syslog based

2.1 Overview

ZTPServer provides a robust server which enables comprehensive bootstrap solutions for Arista network elements.
ZTPserver takes advantage of the the ZeroTouch Provisioning (ZTP) feature in Arista’s EOS (Extensible Operating
System) which enables a node to connect to a provisioning server whenever a valid configuration file is missing from
the internal flash storage.

ZTPServer provides a number of features that extend beyond simply loading a configuration file and a boot image on
a node, including:

• sending an advanced bootstrap client to the node

• mapping each node to an individual definition which describes the bootstrap steps specific to that node

• defining configuration templates and actions which can be shared by multiple nodes - the actions can be cus-
tomised using statically-defined or dynamically-generated attributes

• implementing environment-specific actions which integrate with external/internal management systems

• validation topology using a simple syntax for expressing LLDP neighbor adjacencies

• enabling Zero Touch Replacement, as well as configuration backup and management

ZTPServer is written in Python and leverages standard protocols like DHCP (DHCP options for boot functions),
HTTP(S) (for bi-directional transport), XMPP and syslog (for logging). Most of the configuration files are YAML-
based.

Highlights:

• extends the basic capability of ZTP (in EOS) to allow more robust provisioning activities

• is extensible and easy to integrate into any operational environment

5

ZTPServer Documentation, Release 1.3.2

• can be run natively in EOS or on a separate server

• is developed by a community lead by Arista’s EOS+ team as an open-source project

Features:

• automated configuration file generation

• image and file system validation and standardization

• cable and connectivity validation

• topology-based auto-provisioning

• configuration templating with resource allocation (for dynamic deployments)

• Zero Touch Replacement and software upgrade capabilities

• user extensible actions

• XMPP and syslog-based logging and accounting

2.1.1 ZTP Intro

Zero Touch Provisioning (ZTP) is a feature in Arista EOS’s which, in the absence of a valid startup-config file, enables
nodes to be configured over the networks.

The basic flow is as follows:

• check for startup-config, if absent, enter ZTP mode

• send DHCP requests on all connected interfaces

• if a DHCP response is received with Option 67 defined (bootfile-name), retrieve that file

• if that file is a startup-config, then save it to stuartup-config and reboot

• if that file is an executable, then execute it. Common actions executed this way include upgrading the EOS im-
age, downloading extension packages, and dynamically building a startup-config file. (ZTPServer’s bootstrap
script is launched this way)

• reboot with the new configuration

See the ZTP Tech Bulletin and the Press Release for more information on ZTP.

2.1.2 Architecture

There are 2 primary components of the ZTPServer implementation:

• the server or ZTPServer instance AND

• the client or bootstrap (a process running on each node, which connects back to the server in order to provision
the node)

6 Chapter 2. Features

http://www.arista.com/en/products/eos/automation/articletabs/0
https://www.arista.com/assets/data/pdf/TechBulletins/Tech_bulletin_ZTP.pdf
http://www.arista.com/en/company/news/press-release/345-pr-20110215-01

ZTPServer Documentation, Release 1.3.2

2.1.3 Server

The server can run on any standard x86 server. Currently the only OS-es tested are Linux and MacOS, but theoretically
any system that supports Python could run ZTPServer. The server provides a Python WSGI compliant interface, along
with a standalone HTTP server. The built-in HTTP server runs by default on port 8080 and provides bidirectional file
transport and communication for the bootstrap process.

The primary methods of provisioning a node are:

• statically via mappings between node IDs (serial number or system MAC address) and configuration definitions
OR

• dynamically via mapping between topology information (LLDP neighbors) and configuration definitions

The definitions associated with the nodes contain a set of actions that can perform a variety of functions that ultimately
lead to a final device configuration. Actions can use statically configured attributes or leverage configuration templates
and dynamically allocated resources (via resource pools) in order to generate the system configuration. Definitions,
actions, attributes, templates, and resources are all defined in YAML files.

2.1. Overview 7

ZTPServer Documentation, Release 1.3.2

2.1.4 Client

The client or bootstrap file is retrieved by the node via an HTTP GET request made to the ZTPServer (the URL of
the file is retrieved via DHCP option 67). This file executes locally and gathers system and LLDP information from
the node and sends it back to the ZTPServer. Once the ZTPServer processes the information and confirms that it can
provision the node, the client makes a request to the server for a definition file - this file will contain the list of all
actions which need to be executed by the node in order to provision itself.

Throughout the provisioning process the bootstrap client can log all steps via both local and remote syslogs, as well
as XMPP.

2.1.5 ZTP Client-Server Message Flows

The following diagram show the flow of information during the bootstrap process. The lines in red correspond to the
ZTP feature in EOS, while the lines in blue highlight the ZTPServer operation:

(Red indicates Arista EOS flows. Blue indicates the bootstrap client.)

8 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

2.1. Overview 9

ZTPServer Documentation, Release 1.3.2

2.1.6 Topology Validation

ZTPServer provides a powerful topology validation engine via either neighbordb or pattern files. As part of
the bootstrap process for each node, the LLDP information received on all ports is sent to the ZTPServer and matched
against either neighbordb or a node-specific pattern file (if a node is already configured on the server). Both are
YAML files that are use a simple format to express strongly and loosely typed topology patterns. Pattern entries are
processed top down and can include local or globally-defined variables (including regular expressions).

Patterns in neighbordb match nodes to definitions (dynamic mode), while node-specific pattern files are used for
cabling and connectivity validation (static mode).

Topology-validation can be disabled:

• globally (disable_topology_validation=true in the server’s global configuration file) OR

• on a per-node basis, using open patterns in the pattern files (see the Pattern file configuration section for more
details)

2.1.7 Operational modes

There are several operational modes for ZTPServer, explained below. See Neighbordb pattern examples to see how to
use them.

System ID-based provisioning with no topology validation

Via node-specific folder:

10 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

• a folder corresponding to the node’s system ID is created on the server before bootstrap

• a definition file, startup-config file or both is/are placed in the folder

• topology validation is disabled globally (in the global configuration file) or via an open pattern in the pattern file
located in the node-specific folder

Via neighbordb:

• a pattern which matches the node’s system ID is created in neighbordb before bootstrap

• neighbordb pattern points to a definition file

• neighbordb pattern contains no topology information (LLDP neighbors)

• a node-specific folder with the definition and an open pattern will be created during the bootstrap process

System ID-based provisioning with topology validation

Via node-specific folder:

• a folder corresponding to the node’s system ID is created on the server before bootstrap

• a definition file, startup-config file or both is/are placed in the folder

• topology validation is enabled globally (in the global configuration file) and the topology information is config-
ured in the pattern file located in the node-specific folder

Via neighbordb:

• a pattern which matches the node’s system ID is created in neighbordb before bootstrap

• neighbordb pattern points to a definition file

• neighbordb pattern contains topology information (LLDP neighbors)

• a node-specific folder with the definition and a pattern containing the matched toplogy information will be
created during the bootstrap process

Topology-based provisioning

• a pattern which matches the topology information (LLDP neighbord) is created in neighbordb before bootstrap

• neighbordb pattern points to a definition file

• a node-specific folder with the definition and a pattern containing the matched toplogy information will be
created during the bootstrap process

2.2 Installation

2.2. Installation 11

ZTPServer Documentation, Release 1.3.2

• Requirements
• Installation Options

– Turn-key VM Creation
– PyPI Package (pip install)
– Manual installation

• Upgrading
• Additional services

– Allow ZTPServer Connections In Through The Firewall
– Configure the DHCP Service
– Enable and start the dhcpd service

2.2.1 Requirements

Server:

• Python 2.7 or later (https://www.python.org/download/releases)

• routes 2.0 or later (https://pypi.python.org/pypi/Routes)

• webob 1.3 or later (http://webob.org/)

• PyYaml 3.0 or later (http://pyyaml.org/)

Client:

• EOS 4.12.0 or later (ZTPServer 1.1+)

• EOS 4.13.3 or later (ZTPServer 1.0)

Note: We recommend using a Linux distribution which has Python 2.7 as its standard Python install (e.g. yum in
Centos requires Python 2.6 and a dual Python install can be fairly tricky and buggy). This guide was written based
ZTPServer v1.1.0 installed on Fedora 20.

2.2.2 Installation Options

• Turn-key VM Creation

• PyPI Package (pip install)

• Manual installation

Turn-key VM Creation

The turn-key VM option leverages Packer to auto generate a VM on your local system. Packer.io automates the
creation of the ZTPServer VM. All of the required packages and dependencies are installed and configured. The
current Packer configuration allows you to choose between VirtualBox or VMWare as your hypervisor and each can
support Fedora 20 or Ubuntu Server 12.04.

VM Specification:

• 7GB Hard Drive

• 2GB RAM

• Hostname ztps.ztps-test.com

12 Chapter 2. Features

https://www.python.org/download/releases
https://pypi.python.org/pypi/Routes
http://webob.org/
http://pyyaml.org/
http://eos.arista.com
http://eos.arista.com
http://www.packer.io/

ZTPServer Documentation, Release 1.3.2

– eth0 (NAT) DHCP

– eth1 (hostonly) 172.16.130.10

• Firewalld/UFW disabled

• Users

– root/eosplus

– ztpsadmin/eosplus

• Python 2.7.5 with PIP

• DHCP installed with Option 67 configured (eth1 only)

• BIND DNS server installed with zone ztps-test.com

– wildcard forwarding rule passing all other queries to 8.8.8.8

– SRV RR for im.ztps-test.com

• rsyslog-ng installed; Listening on UDP and TCP (port 514)

• ejabberd (XMPP server) configured for im.ztps-test.com

– XMPP admin user: ztpsadmin/eosplus

• httpd installed and configured for ZTPServer (mod_wsgi)

• ZTPServer installed

• ztpserver-demo repo files pre-loaded

See the Packer VM code and documentation as well as the ZTPServer demo files for the Packer VM.

PyPI Package (pip install)

ZTPServer may be installed as a PyPI package.

This option assumes you have a server with Python and pip pre-installed. See installing pip.

Once pip is installed, type:

bash-3.2$ pip install ztpserver

The pip install process will install all dependencies and run the install script, leaving you with a ZTPServer instance
ready to configure.

Manual installation

Download source:

• Latest Release on GitHub

– Previous releases

• Active Stable: (GitHub) (ZIP) (TAR)

• Development: (GitHub) (ZIP) (TAR)

Once the above system requirements are met, you can use the following git command to pull the develop branch into
a local directory on the server where you want to install ZTPServer:

2.2. Installation 13

https://github.com/arista-eosplus/packer-ztpserver
https://github.com/arista-eosplus/ztpserver-demo
https://pypi.python.org/pypi/ztpserver
https://pypi.python.org/pypi/ztpserver
https://pip.pypa.io/en/latest/installing.html
https://github.com/arista-eosplus/ztpserver/releases/latest
https://github.com/arista-eosplus/ztpserver/releases/
https://github.com/arista-eosplus/ztpserver/tree/master
https://github.com/arista-eosplus/ztpserver/zipball/master
https://github.com/arista-eosplus/ztpserver/tarball/master
https://github.com/arista-eosplus/ztpserver/tree/develop
https://github.com/arista-eosplus/ztpserver/zipball/develop
https://github.com/arista-eosplus/ztpserver/tarball/develop

ZTPServer Documentation, Release 1.3.2

bash-3.2$ git clone https://github.com/arista-eosplus/ztpserver.git

Or, you may download the zip or tar archive and expand it.

bash-3.2$ wget https://github.com/arista-eosplus/ztpserver/tarball/master
bash-3.2$ tar xvf <filename>

or
bash-3.2$ unzip <filename>

Change in to the ztpserver directory, then checkout the release desired:

bash-3.2$ cd ztpserver
bash-3.2$ git checkout v1.1.0

Execute setup.py to build and then install ZTPServer:

[user@localhost ztpserver]$ sudo python setup.py build
running build
running build_py
...

[root@localhost ztpserver]# sudo python setup.py install
running install
running build
running build_py
running install_lib
...

2.2.3 Upgrading

Upgrading ZTP Server is based on the method of installation:

• PyPI (pip):

sudo pip install --upgrade ztpserver

• Manual, Packer-VM, GitHub installs:

cd ztpserver/
sudo ./utils/refresh_ztps -b <branch>

The ztpserver/ directory, above, should be a git repository (where the files were checked out). The branch
identifier may be any version identifier (1.3.2, 1.1), or an actual branch on github such as master (released),
or develop (development).

• RPM:

sudo rpm -Uvh ztpserver-<version>.rpm

2.2.4 Additional services

Note: If using the Turn-key VM Creation, all of the steps, below, will have been completed, please reference the VM
documentation.

14 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Allow ZTPServer Connections In Through The Firewall

Be sure your host firewall allows incoming connections to ZTPServer. The standalone server runs on port TCP/8080
by default.

Firewalld examples:

• Open TCP/<port> through firewalld bash-3.2$ firewall-cmd --zone=public
--add-port=<port>/tcp [--permanent]

• Stop firewalld bash-3.2$ systemctl status firewalld

• Disable firewalld bash-3.2$ systemctl disable firewalld

Note: If using the Turn-key VM Creation, all the steps from below will be been completed automatically.

Configure the DHCP Service

Set up your DHCP infrastructure to server the full path to the ZTPServer bootstrap file via option 67. This can be
performed on any DHCP server. Below you can see how you can do that for ISC dhcpd.

Get dhcpd:

RedHat: bash-3.2$ sudo yum install dhcp

Ubuntu: bash-3.2$ sudo apt-get install isc-dhcp-server

Add a network (in this case 192.168.100.0/24) for servicing DHCP requests for ZTPServer:

subnet 192.168.100.0 netmask 255.255.255.0 {
range 192.168.100.200 192.168.100.205;
option routers 192.168.100.1;
option domain-name-servers <ipaddr>;
option domain-name "<org>";
option bootfile-name "http://<ztp_hostname_or_ip>:<port>/bootstrap";

}

Enable and start the dhcpd service

RedHat (and derivative Linux implementations)

bash-3.2# sudo /usr/bin/systemctl enable dhcpd.service bash-3.2# sudo
/usr/bin/systemctl start dhcpd.service

Ubuntu (and derivative Linux implementations)

bash-3.2# sudo /usr/sbin/service isc-dhcp-server start

Check that /etc/init/isc-dhcp-server.conf is configured for automatic startup on boot.

Edit the global configuration file located at /etc/ztpserver/ztpserver.conf (if needed). See the Global
configuration file options for more information.

2.3 Startup

2.3. Startup 15

ZTPServer Documentation, Release 1.3.2

• Apache (mod_wsgi)
• Standalone debug server

HTTP Server Deployment Options

ZTPServer is a Python WSGI compliant application that can be deployed behind any WSGI web server or run as a
standalone application.

After initial startup, any change to ztpserver.conf will require a server restart. However, all other files are read
on-demand, therefore no server restart is required to pick up changes in definitions, neighbordb, resources, etc.

Note: The ztps standalone server executable is for demo and testing use ONLY. It is NOT recommended for
production use!

2.3.1 Apache (mod_wsgi)

If using Apache, this section provides instructions for setting up ZTPServer using mod_wsgi. This section assumes
the reader is familiar with Apache and has already installed mod_wsgi. For details on how to install mod_wsgi, please
see the modwsgi Quick Installation Guide.

To enable ZTPServer for an Apache server, we need to add the following WSGI configuration to the Apache
config. A good location might be to create /etc/httpd/conf.d/ztpserver.conf or /etc/apache2/sites-
enabled/ztpserver.conf:

LoadModule wsgi_module modules/mod_wsgi.so
Listen 8080

<VirtualHost *:8080>

WSGIDaemonProcess ztpserver user=www-data group=www-data threads=50
WSGIScriptAlias / /etc/ztpserver/ztpserver.wsgi
Required for RHEL
#WSGISocketPrefix /var/run/wsgi

<Location />
WSGIProcessGroup ztpserver
WSGIApplicationGroup %{GLOBAL}

For Apache <= 2.2, use Order and Allow
Order deny,allow
Allow from all
For Apache >= 2.4, Allow is replaced by Require
Require all granted

</Location>

Override default logging locations for Apache
#ErrorLog /path/to/ztpserver_error.log
#CustomLog /path/to/ztpserver_access.log

</VirtualHost>

WSGIScriptAlias should point to the ztpserver.wsgi file which is installed by default under
/etc/ztpserver/ztpserver.wsgi. You will notice that the <Location /> directive is set to the root directory.
This will enable ZTPServer to listen at the base server URL:

http://<host_ip>:8080/bootstrap

16 Chapter 2. Features

https://code.google.com/p/modwsgi/wiki/QuickInstallationGuide

ZTPServer Documentation, Release 1.3.2

If you would like to run the ZTPServer under a subdirectory, leave the Apache configuration as it is listed above and
modify the ZTPServer configuration to include the URL path prefix (/ztpserver in this example).

For example, edit the default configuration file found at /etc/ztpserver/ztpserver.conf by modifying or
adding the following line under the [default] section:

server_url = http://<host_ip>:8080/ztpserver/

where /ztpserver/ is the subdirectory you would like the wsgi to listen. Once completed, restart Apache and you should
now be able to access your ZTPServer at the specified URL. To test, simply use curl - for example:

curl http://<host_ip>:8080/ztpserver/bootstrap

If everything is configured properly, curl should be able to retrieve the bootstrap script. If there is a problem, all of the
ZTPServer log messages should be available under the Apache server error logs. See the ErrorLog directive in your
Apache configuration to determine the location of the error log.

Note: File Permissions - Apache mod_wsgi will run ztpserver.wsgi as the specified system user in your Apache
config. This use must be able to read/write to the files in /usr/share/ztpserver (or whereever you created
your data_root.)

Note: SELinux - Apache will need to read and write to files in /usr/share/ztpserver. Therefore, you
might need to update/assign an SELinux user/role/type to these files. You can do something like chcon -R -h
system_u:object_r:httpd_sys_script_rw_t /usr/share/ztpserver to accomplish that.

2.3.2 Standalone debug server

Note: ZTPServer ships with a single-threaded server that is sufficient for testing or demonstration, only. It is not
recommended for use with more than 10 nodes.

To start the standalone ZTPServer, exec the ztps binary:

[root@ztpserver ztpserver]# ztps
INFO: [app:115] Logging started for ztpserver
INFO: [app:116] Using repository /usr/share/ztpserver
Starting server on http://<ip_address>:<port>

The following options may be specified when starting the ztps binary:

-h, --help show this help message and exit
--version, -v Displays the version information
--conf CONF, -c CONF Specifies the configuration file to use
--validate-config, -V

Validates config files
--debug Enables debug output to the STDOUT
--clear-resources, -r

Clears all resource files

Assuming that the DHCP server is serving DHCP offers which include the path to the ZTPServer bootstrap script in
Option 67 and that the EOS nodes can access the bootstrap file over the network, the provisioning process should now
be able to automatically start for all the nodes with no startup configuration.

2.4 Configuration

2.4. Configuration 17

ZTPServer Documentation, Release 1.3.2

• Overview
• Global configuration file
• Bootstrap configuration
• Static provisioning - overview
• Static provisioning - startup_config
• Static provisioning - definition
• Static provisioning - attributes
• Static provisioning - pattern
• Static provisioning - config-handler
• Static provisioning - log
• Dynamic provisioning - overview
• Dynamic provisioning - neighbordb

– variables
– node: unique_id
– interfaces: port_name
– system_name:neighbor_port_name
– port_name: system_name:neighbor_port_name

• Definitions
• Actions
• Plugins for allocating resources
• Config-handlers
• Other files

2.4.1 Overview

The ZTPServer uses a series of YAML files to provide its various configuration and databases. Use of the YAML
format makes the files easier to read and makes it easier and more intuitive to add/update entries (as opposed to other
files formats such as JSON, or binary formats such as SQL).

The ZTPServer components are housed in a single directory defined by the data_root variable in
the global configuration file. The directory location will vary depending on the configuration in
/etc/ztpserver/ztperserver.conf.

The following directory structure is normally used:

[data_root]
bootstrap/

bootstrap
bootstrap.conf

nodes/
<unique_id)>/

startup-config
definition
pattern
config-handler
.node
attributes

actions/
files/
definitions/
resources/
neighbordb

All configuration files can be validated using:

18 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

(bash)# ztps --validate

2.4.2 Global configuration file

The global ZTPServer configuration file can be found at /etc/ztpserver/ztpserver.conf. It uses the INI
format (for details, see top section of Python configparser).

An alternative location for the global configuration file may be specified by using the --conf command line option:

e.g.

(bash)# ztps --help
usage: ztpserver [options]

optional arguments:
-h, --help show this help message and exit
--version, -v Displays the version information

--conf CONF, -c CONF Specifies the configuration file to use
--validate-config, -V

Validates config files
--debug Enables debug output to the STDOUT
--clear-resources, -r

Clears all resource files
(bash)# ztps --conf /var/ztps.conf

If the global configuration file is updated, the server must be restarted in order to pick up the new configuration.

[default]

Location of all ztps boostrap process data files
default= /usr/share/ztpserver
data_root=<PATH>

UID used in the /nodes structure
default=serialnum
identifier=<serialnum | systemmac>

Server URL to-be-advertised to clients (via POST replies) during the bootstrap process
default=http://ztpserver:8080
server_url=<URL>

Enable local logging
default=True
logging=<True | False>

Enable console logging
default=True
console_logging=<True | False>

Console logging format
default=%(asctime)-15s:%(levelname)s:[%(module)s:%(lineno)d] %(message)s
console_logging_format=<(Python)logging format>

Globally disable topology validation in the bootstrap process
default=False
disable_topology_validation=<True | False>

[server]

2.4. Configuration 19

https://docs.python.org/2/library/configparser.html

ZTPServer Documentation, Release 1.3.2

Note: this section only applies to using the standalone server. If
running under a WSGI server, these values are ignored

Interface to which the server will bind to (0:0:0:0 will bind to
all available IPv4 addresses on the local machine)
default=0.0.0.0
interface=<IP addr>

TCP listening port
default=8080
port=<TCP port>

[bootstrap]
Bootstrap filename (file located in <data_root>/bootstrap)
default=bootstrap
filename=<name>

[neighbordb]
Neighbordb filename (file located in <data_root>)
default=neighbordb
filename=<name>

Note: Configuration values may be overridden by setting environment variables, if the configuration attribute supports
it. This is mainly used for testing and should not be used in production deployments.

Configuration values that support environment overrides use the environ keyword, as shown below:

runtime.add_attribute(StrAttr(
name='data_root',
default='/usr/share/ztpserver',
environ='ZTPS_DEFAULT_DATAROOT'

))

In the above example, the data_root value is normally configured in the [default] section as data_root; however,
if the environment variable ZTPS_DEFAULT_DATAROOT is defined, it will take precedence.

2.4.3 Bootstrap configuration

[data_root]/bootstrap/ contains files that control the bootstrap process of a node.

• bootstrap is the base bootstrap script which is going to be served to all clients in order to control the bootstrap
process. Before serving the script to the clients, the server replaces any references to $SERVER with the value
of server_url in the global configuration file.

• bootstrap.conf is a configuration file which defines the local logging configuration on the nodes (during the
bootstrap process). The file is loaded on on-demand.

e.g.

logging:
-

destination: "ztps.ztps-test.com:514"
level: DEBUG

- destination: file:/tmp/ztps-log
level: DEBUG

- destination: ztps-server:1234
level: CRITICAL

20 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

- destination: 10.0.1.1:9000
level: CRITICAL

xmpp:
domain: im.ztps-test.com
username: bootstrap
password: eosplus
rooms:

- ztps
- ztps-room2

Note: In order for XMPP logging to work, a non-EOS user need to be connected to the room specified in boot-
strap.conf, before the ZTP process starts. The room has to be created (by the non-EOS user) before the bootstrap
client starts logging the ZTP process via XMPP.

2.4.4 Static provisioning - overview

A node can be statically configured on the server as follows:

• create a new directory under [data_root]/nodes, using the system’s unique_id as the name

• create/symlink a startup-config or definition file in the newly-created folder

• if topology validation is enabled, also create/symlink a pattern file

• optionally, create config-handler script which is run whenever a PUT startup-config request succeeds

2.4.5 Static provisioning - startup_config

startup-config provides a static startup-configuration for the node. If this file is present in a node’s folder,
when the node sends a GET request to /nodes/<unique_id>, the server will respond with a static definition that
includes:

• a replace_config action which will install the configuration file on the switch (see actions section below for
more on this). This action will be placed first in the definition.

• all the actions from the local definition file (see definition section below for more on this) which have the
always_execute attribute set to True

2.4.6 Static provisioning - definition

The definition file contains the set of actions which are going to be performed during the bootstrap process for a node.
The definition file can be either: manually created OR auto-generated by the server when the node matches one of
the patterns in neighbordb (in this case the definition file is generated based on the definition file associated with the
matching pattern in neighbordb).

name: <system name>

actions:
-
action: <action name>

attributes: # attributes at action scope
always_execute: True # optional, default False
<key>: <value>
<key>: <value>

2.4. Configuration 21

ZTPServer Documentation, Release 1.3.2

onstart: <msg> # message to log before action is executed
onsuccess: <msg> # message to log if action execution succeeds
onfailure: <msg> # message to log if action execution fails

...

attributes: # attributes at global scope
<key>: <value>
<key>: <value>
<key>: <value>

2.4.7 Static provisioning - attributes

Attributes are either key/value pairs, key/dictionary pairs, key/list pairs or key/reference pairs. They are all sent to the
client in order to be passed in as arguments to actions.

Here are a few examples:

• key/value:

attributes:
my_attribute : my_value

• key/dictionary

attributes:
my_dict_attribute:

key1: value1
key2: value2

• key/list:

attributes:
list_name:

- my_value1
- my_value2
- my_valueN

• key/reference:

attributes:
my_attribute : $my_other_attribute

key/reference attributes are identified by the fact that the value starts with the ‘$’ sign, followed by the name of
another attribute. They are evaluated before being sent to the client.

Example:

attributes:
my_other_attribute: dummy
my_attribute : $my_other_attribute

will be evaluated to:

attributes:
my_other_attribute: dummy
my_attribute : dummy

If a reference points to a non-existing attribute, then the variable substitution will result in a value of None.

22 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Note: Only one level of indirection is allowed - if multiple levels of indirection are used, then the data sent to the
client will contain unevaluated key/reference pairs in the attributes list (which might lead to failures or unexpected
results in the client).

The values of the attributes can be either strings, numbers, lists, dictionaries, or references to other attributes or plugin
references for allocating resources.

Plugins can be used to allocate resources on the server side and then pass the result of the allocation back to the client
via the definition. The supported plugins are:

• allocate(resource_pool) - allocates an available resource from a file-based resource pool

• sqlite(resource_pool) - allocates an available resource from a sqlite database

Note: Plugins can only be referenced with strings as arguments, currently. See section on add_config action for
examples.

Attributes can be defined in three places:

• in the definition, at action scope

• in the definition, at global scope

• in the node’s attributes file (see below)

attributes is a file which can be used in order to store attributes associated with the node’s definition. This is
especially useful whenever multiple nodes share the same definition - in that case, instead of having to edit each
node’s definition in order to add the attributes (at the global or action scope), all nodes can share the same definition
(which might be symlinked to their individual node folder) and the user only has to create the attributes file for each
node. The attributes file should be a valid key/value YAML file.

<key>: <value>
<key>: <value>
...

For key/value, key/list and and key/reference attributes, in case of conflicts between the three scopes, the following
order of precidence rules are applied to determine the final value to send to the client:

1. action scope in the definition takes precedence

2. attributes file comes next

3. global scope in the definition comes last

For key/dict attributes, in case of conflicts between the scopes, the dictionaries are merged. In the event of dictionary
key conflicts, the same precidence rules from above apply.

2.4.8 Static provisioning - pattern

The pattern file a way to validate the node’s topology during the bootstrap process (if topology validation is en-
abled). The pattern file can be either:

• manually created

• auto-generated by the server, when the node matches one of the patterns in neighbordb (the pattern that is
matched in neighbordb is, then, written to this file and used for topology validation in subsequent re-runs of
the bootstrap process)

The format of a pattern is very similar to the format of neighordb (see neighbordb section below):

2.4. Configuration 23

ZTPServer Documentation, Release 1.3.2

variables:
<variable_name>: <function>

...

name: <single line description of pattern> # optional
interfaces:

- <port_name>:<system_name>:<neighbor_port_name>
- <port_name>:

device: <system_name>
port: <neighbor_port_name>

...

If the pattern file is missing when the node makes a GET request for its definition, the server will log a message and
return either:

• 400 (BAD_REQUEST) if topology validation is enabled

• 200 (OK) if topology validation is disabled

If topology validation is enabled globally, the following patterns can be used in order to disable it for a particular node:

• match any node which has at least one LLDP-capable neighbor:

name: <pattern name>
interfaces:

- any: any:any

OR

• match any node which has no LLDP-capable neighbors:

name: <pattern name>
interfaces:

- none: none:none

2.4.9 Static provisioning - config-handler

The config-handler file can be any script which can be executed on the server. The script will be executed every
time a PUT startup-config request succeeds for the node.

The script can be used for raising alarms, performing checks, submitting the startup-config file to a revision control
system, etc.

2.4.10 Static provisioning - log

The .node file contains a cached copy of the node’s details that were received during the POST request the node
makes to /nodes (URI). This cache is used to validate the node’s neighbors against the pattern file, if topology
validation is enabled (during the GET request the node makes in order to retrieve its definition).

The .node is created automatically by the server and should not be edited manually.

Example .node file:

{"neighbors": {"Management1": [{"device": "ztps.ztps-test.com",
"port": "0050.569b.9ba5"}

],
"Ethernet2": [{"device": "veos-dc1-pod1-spine1",

"port": "0050.569a.9321"}
]

24 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

},
"model": "vEOS",
"version": "4.13.7M",
"systemmac": "005056b863ac"

}

2.4.11 Dynamic provisioning - overview

A node can be dynamically provisioned by creating a matching neighbordb ([data_root]/neighbordb)
entry which maps to a definition. The entry can potentially match multiple nodes. The associated definition should be
created in [data_root]/definitions/.

2.4.12 Dynamic provisioning - neighbordb

The neighbordb YAML file defines mappings between patterns and definitions. If a node is not already configured
via a static entry, then the node’s topology details are attempted to be matched against the patterns in neighbordb.
If a match is successful, then a node definition will be automatically generated for the node (based on the mapping in
neighbordb).

There are 2 types of patterns supported in neighbordb: node-specific (containing the node attribute, which refers to
the unique_id of the node) and global patterns.

Rules:

• if multiple node-specific entries reference the same unique_id, only the first will be in effect - all others will be
ignored

• if both the node and interfaces attributes are specified and a node’s unique_id is a match, but the topology
information is not, then the overall match will fail and the global patterns will not be considered

• if there is no matching node-specific pattern for a node’s unique_id, then the server will attempt to match the
node against the global patterns (in the order they are specified in neighbordb)

• if a node-specific pattern matches, the server will automatically generate an open pattern in the node’s folder.
This pattern will match any device with at least one LLDP-capable neighbor. Example: any: any:any

variables:

variable_name: function
...
patterns:

- name: <single line description of pattern>
definition: <defintion_url>
node: <unique_id>
config-handler: <config-handler>
variables:

<variable_name>: <function>
interfaces:

- <port_name>: <system_name>:<neighbor_port_name>
- <port_name>:

device: <system_name>
port: <neighbor_port_name>

...

Note: Mandatory attributes: name, definition, and either node, interfaces or both.

Optional attributes: variables, config-handler.

2.4. Configuration 25

ZTPServer Documentation, Release 1.3.2

variables

The variables can be used to match the remote device and/or port name (<system_name>,
<neighbor_port_name> above) for a neighbor. The supported values are:

string same as exact(string) from below

exact (pattern) defines a pattern that must be matched exactly (Note: this is the default function if another function
is not specified)

regex (pattern) defines a regex pattern to match the node name against

includes (string) defines a string that must be present in system/port name

excludes (string) defines a string that must not be present in system/port name

node: unique_id

Serial number or MAC address, depending on the global ‘identifier’ attribute in ztpserver.conf.

interfaces: port_name

Local interface name - supported values:

• Any interface

– any

• No interface

– none

• Explicit interface

– Ethernet1

– Ethernet2/4

– Management1

• Interface list/range

– Ethernet1-2

– Ethernet1,3

– Ethernet1-2,3/4

– Ethernet1-2,4

– Ethernet1-2,4,6

– Ethernet1-2,4,6,8-9

– Ethernet4,6,8-9

– Ethernet10-20

– Ethernet1/3-2/4 *

– Ethernet3-$ *

– Ethernet1/10-$ *

• All Interfaces on a Module

26 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

– Ethernet1/$ *

Note: * Planned for future releases.

system_name:neighbor_port_name

Remote system and interface name - supported values (STRING = any string which does not contain any white spaces):

• any: interface is connected

• none: interface is NOT connected

• <STRING>:<STRING>: interface is connected to specific device/interface

• <STRING> (Note: if only the device is configured, then ‘any’ is implied for the interface. This is equal to
<DEVICE>:any): interface is connected to device

• <DEVICE>:any: interface is connected to device

• <DEVICE>:none: interface is NOT connected to device (might be connected or not to some other device)

• $<VARIABLE>:<STRING>: interface is connected to specific device/interface

• <STRING>:<$VARIABLE>: interface is connected to specific device/interface

• $<VARIABLE>:<$VARIABLE>: interface is connected to specific device/interface

• $<VARIABLE> (‘any’ is implied for the interface. This is equal to $<VARIABLE>:any): interface is con-
nected to device

• $<VARIABLE>:any: interface is connected to device

• $<VARIABLE>:none: interface is NOT connected to device (might be connected or not to some other device)

port_name: system_name:neighbor_port_name

Negative constraints

1. any: DEVICE:none: no port is connected to DEVICE

2. none: DEVICE:any: same as above

3. none: DEVICE:none: same as above

4. none: any:PORT: no device is connected to PORT on any device

5. none: DEVICE:PORT: no device is connected to DEVICE:PORT

6. INTERFACES: any:none: interfaces not connected

7. INTERFACES: none:any: same as above

8. INTERFACES: none:none: same as above

9. INTERFACES: none:PORT: interfaces not connected to PORT on any device

10. INTERFACES: DEVICE:none: interfaces not connected to DEVICE

11. any: any:none: bogus, will prevent pattern from matching anything

12. any: none:none: bogus, will prevent pattern from matching anything

13. any: none:any: bogus, will prevent pattern from matching anything

14. any: none:PORT: bogus, will prevent pattern from matching anything

2.4. Configuration 27

ZTPServer Documentation, Release 1.3.2

15. none: any:any: bogus, will prevent pattern from matching anything

16. none: any:none: bogus, will prevent pattern from matching anything

17. none: none:any: bogus, will prevent pattern from matching anything

18. none: none:none: bogus, will prevent pattern from matching anything

19. none: none:PORT: bogus, will prevent pattern from matching anything

Positive constraints

1. any: any:any: “Open pattern” matches anything

2. any: any:PORT: matches any interface connected to any device’s PORT

3. any: DEVICE:any: matches any interface connected to DEVICE

4. any: DEVICE:PORT: matches any interface connected to DEVICE:PORT

5. INTERFACES: any:any: matches if local interfaces is one of INTERFACES

6. INTERFACES: any:PORT: matches if one of INTERFACES is connected to any device’s PORT

7. INTERFACES: DEVICE:any: matches if one of INTERFACES is connected to DEVICE

8. INTERFACES: DEVICE:PORT: matches if one of INTERFACES is connected to DEVICE:PORT

2.4.13 Definitions

[data_root]/definitions/ contains a set of shared definition files which can be associated with patterns
in neighbordb (see the Dynamic provisioning - neighbordb section below) or added to/symlink-ed from nodes’
folders.

See Static provisioning - definition for more.

2.4.14 Actions

[data_root]/actions/ contains the set of all actions available for use in definitions.

New custom actions to-be referenced from definitions can be added to [data_root]/actions/. These will be
loaded on-demand and do not require a restart of the ZTPServer. See [data_root]/actions for examples.

Action Description Required Attributes
add_config Adds a block of configuration to the final

startup-config file
url

copy_file Copies a file from the server to the destination node src_url, dst_url, overwrite, mode
install_cli_pluginInstalls a new EOS CLI plugin and configures rc.eos url
install_extensionInstalls a new EOS extension extension_url, autoload, force
install_imageValidates and installs a specific version of EOS url, version
replace_configSends an entire startup-config to the node (overrides

(overrides add_config)
url

send_email Sends an email to a set of recipients routed through a
relay host. Can include file attachments

smarthost, sender, receivers, subject,
body, attachments, commands

run_bash_scriptRun bash script during bootstrap. url
run_cli_commandsRun CLI commands during bootstrap. url

Additional details on each action are available in the Actions module docs.

e.g.

28 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Assume that we have a block of configuration that adds a list of NTP servers to the startup configuration. The action
would be constructed as such:

actions:
- name: configure NTP

action: add_config
attributes:

url: /files/templates/ntp.template

The above action would reference the ntp.template file which would contain configuration commands to config-
ure NTP. The template file could look like the following:

ntp server 0.north-america.pool.ntp.org
ntp server 1.north-america.pool.ntp.org
ntp server 2.north-america.pool.ntp.org
ntp server 3.north-america.pool.ntp.org

When this action is called, the configuration snippet above will be appended to the startup-config file.

The configuration templates can also contains variables, which are automatically substituted during the action’s exe-
cution. A variable is marked in the template via the ‘$’ symbol.

e.g. Let’s assume a need for a more generalized template that only needs node specific values changed (such as a
hostname and management IP address). In this case, we’ll build an action that allows for variable substitution as
follows.

actions:
- name: configure system

action: add_config
attributes:

url: /files/templates/system.template
variables:

hostname: veos01
ipaddress: 192.168.1.16/24

The corresponding template file system.template will provide the configuration block:

hostname $hostname
!
interface Management1

description OOB interface
ip address $ipaddress
no shutdown

This will result in the following configuration being added to the startup-config:

hostname veos01
!
interface Management1

description OOB interface
ip address 192.168.1.16/24
no shutdown

Note that in each of the examples, above, the template files are just standard EOS configuration blocks.

2.4.15 Plugins for allocating resources

Plugins for allocating resources from resource pools are located in [data_root]/plugins/ and are referenced
by <filename>(<resource_pool>).

2.4. Configuration 29

ZTPServer Documentation, Release 1.3.2

Each plugin contains a main function with the following signature:

def main(node_id, pool): ...

where:

• node_id is the unique_id of the node being provisioned

• pool is the name of the resource pool from which an attribute is being allocated

New custom plugins to-be referenced from definitions can be added to [data_root]/plugins/. These will be
loaded on-demand and do not require a restart of the ZTPServer. See [data_root]/plugins/test for a very
basic example.

allocate(resource_pool)

[data_root]/resources/ contains global resource pools from which attributes in definitions can be allocated.

The resource pools provide a way to dynamically allocate a resource to a node when the node definition is created.
The resource pools are key/value YAML files that contain a set of resources to be allocated to a node.

<value1>: <"null"|node_identifier>
<value2>: <"null"|node_identifier>

In the example below, a resource pool contains a series of 8 IP addresses to be allocated. Entries which are not yet
allocated to a node are marked using the null descriptor.

192.168.1.1/24: null
192.168.1.2/24: null
192.168.1.3/24: null
192.168.1.4/24: null
192.168.1.5/24: null
192.168.1.6/24: null
192.168.1.7/24: null
192.168.1.8/24: null

When a resource is allocated to a node’s definition, the first available null value will be replaced by the node’s
unique_id. Here is an example:

192.168.1.1/24: 001c731a2b3c
192.168.1.2/24: null
192.168.1.3/24: null
192.168.1.4/24: null
192.168.1.5/24: null
192.168.1.6/24: null
192.168.1.7/24: null
192.168.1.8/24: null

On subsequent attempts to allocate the resource to the same node, ZTPS will first check to see whether the node has
already been allocated a resource from the pool. If it has, it will reuse the resource instead of allocating a new one.

In order to free a resource from a pool, simply turn the value associated to it back to null, by editing the resource
file.

Alternatively, $ztps --clear-resources can be used in order to free all resources in all file-based resource
files.

sqlite(resource_pool)

Allocates a resource from a pre-filled sqlite database. The database is defined by the global variable, ‘DB_URL’ within
the plugin. The database can include multiple tables, but the value passed into the ‘sqlite(resource_pool)’ function will
be used to look for an available resource.

30 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Table structure should be as follows with the exact column names:

node_id key
NULL 1.1.1.1
NULL 1.1.1.2
NULL 1.1.1.3

Which can be created with statements like:

CREATE TABLE `mgmt_subnet`(key TEXT, node_id TEXT)

and add entries with:

INSERT INTO `mgmt_subnet` VALUES('1.1.1.1', NULL)

When a resource is added, the node_id row will be updated to include the System ID from the switch.

node_id key
001122334455 1.1.1.1
NULL 1.1.1.2
NULL 1.1.1.3

On subsequent attempts to allocate the resource to the same node, ztpserver will first check to see whether the node
has already been allocated a resource from the pool. If it has, it will reuse the resource instead of allocating a new one.

Definition example:

actions:
-
action: add_config
attributes:

url: files/templates/ma1.templates
variables:

ipaddress: sqlite('mgmt_subnet')
name: "configure ma1"

Tip: Check out create_db.py for an example script to create a sqlite database.

2.4.16 Config-handlers

[data_root]/config-handlers/ contains config-handlers which can be associated with nodes via neigh-
bordb. A config-handler script is executed every time a PUT startup-config request succeeds for a node which is
associated to it.

2.4.17 Other files

[data_root]/files/ contains the files that actions might request from the server. For example,
[data_root]/files/images/ could contain all EOS SWI files.

2.5 Examples

2.5. Examples 31

https://raw.githubusercontent.com/arista-eosplus/ztpserver/develop/utils/create_db.py

ZTPServer Documentation, Release 1.3.2

• Global configuration file
• Dynamic neighbordb or pattern file
• Static neighbordb and /node/<unique-id>/pattern file
• Sample dynamic definition file
• Sample templates
• Sample resources
• Neighbordb pattern examples

– Example #1
– Example #2
– Example #3
– Example #4

• More examples

2.5.1 Global configuration file

[default]
Location of all ztps boostrap process data files
data_root = /usr/share/ztpserver

UID used in the /nodes structure (serialnumber or systemmac)
identifier = serialnumber

Server URL to-be-advertised to clients (via POST replies) during the bootstrap process
server_url = http://172.16.130.10:8080

Enable local logging
logging = True

Enable console logging
console_logging = True

Console logging format
console_logging_format = %(asctime)s:%(levelname)s:[%(module)s:%(lineno)d] %(message)s

Globally disable topology validation in the bootstrap process
disable_topology_validation = False

[server]
Note: this section only applies to using the standalone server. If
running under a WSGI server, these values are ignored

Interface to which the server will bind to (0:0:0:0 will bind to
all available IPv4 addresses on the local machine)
interface = 172.16.130.10

TCP listening port
port = 8080

[bootstrap]
Bootstrap filename (file located in <data_root>/bootstrap)
filename = bootstrap

[neighbordb]

32 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Neighbordb filename (file located in <data_root>)
filename = neighbordb

2.5.2 Dynamic neighbordb or pattern file

patterns:
#dynamic sample

- name: dynamic_sample
definition: tor1
interfaces:

- Ethernet1: spine1:Ethernet1
- Ethernet2: spine2:Ethernet1
- any: ztpserver:any

- name: dynamic_sample2
definition: tor2
interfaces:

- Ethernet1: spine1:Ethernet2
- Ethernet2: spine2:Ethernet2
- any: ztpserver:any

2.5.3 Static neighbordb and /node/<unique-id>/pattern file

patterns:
#static sample

- name: static_node
node: 000c29f3a39g
interfaces:

- any: any:any

2.5.4 Sample dynamic definition file

actions:

-
action: install_image
always_execute: true
attributes:

url: files/images/vEOS.swi
version: 4.13.5F

name: "validate image"
-
action: add_config
attributes:

url: files/templates/ma1.template
variables:

ipaddress: allocate('mgmt_subnet')
name: "configure ma1"

-
action: add_config
attributes:

url: files/templates/system.template

2.5. Examples 33

ZTPServer Documentation, Release 1.3.2

variables:
hostname: allocate('tor_hostnames')

name: "configure global system"
-
action: add_config
attributes:

url: files/templates/login.template
name: "configure auth"

-
action: add_config
attributes:

url: files/templates/ztpprep.template
name: "configure ztpprep alias"

-
action: add_config
attributes:

url: files/templates/snmp.template
variables: $variables

name: "configure snmpserver"
-
action: add_config
attributes:

url: files/templates/configpush.template
variables: $variables

name: "configure config push to server"
-
action: copy_file
always_execute: true
attributes:

dst_url: /mnt/flash/
mode: 777
overwrite: if-missing
src_url: files/automate/ztpprep

name: "automate reload"
attributes:

variables:
ztpserver: 172.16.130.10

name: tora

2.5.5 Sample templates

#login.template
#::::::::::::::
username admin priv 15 secret admin

#ma1.template
#::::::::::::::
interface Management1

ip address $ipaddress
no shutdown

#hostname.template
#::::::::::::::
hostname $hostname

34 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

2.5.6 Sample resources

#mgmt_subnet
#::::::::::::::
192.168.100.210/24: null
192.168.100.211/24: null
192.168.100.212/24: null
192.168.100.213/24: null
192.168.100.214/24: null

#tor_hostnames
#::::::::::::::
veos-dc1-pod1-tor1: null
veos-dc1-pod1-tor2: null
veos-dc1-pod1-tor3: null
veos-dc1-pod1-tor4: null
veos-dc1-pod1-tor5: null

2.5.7 Neighbordb pattern examples

Example #1

- name: standard leaf definition

definition: leaf_template
node: ABC12345678
interfaces:
- Ethernet49: pod1-spine1:Ethernet1/1
- Ethernet50:

device: pod1-spine2
port: Ethernet1/1

In example #1, the topology map would only apply to a node with system ID equal to ABC12345678. The following
interface map rules apply:

• Interface Ethernet49 must be connected to node pod1-spine1 on port Ethernet1/1

• Interface Ethernet50 must be connected to node pod1-spine2 on port Ethernet1/1

Example #2

- name: standard leaf definition

definition: leaf_template
node: 001c73aabbcc
interfaces:
- any: regex('pod\d+-spine\d+'):Ethernet1/$
- any:

device: regex('pod\d+-spine1')
port: Ethernet2/3

In this example, the topology map would only apply to the node with system ID equal to 001c73aabbcc. The following
interface map rules apply:

• At least one interface interface must be connected to node that matches the regular expression ‘pod+-spine+’ on
port Ethernet1/$ (any port on module 1)

2.5. Examples 35

ZTPServer Documentation, Release 1.3.2

• At least one interface and not the interface which matched in the previous step must be connected to a node that
matches the regular expression ‘pod+-spine1’ on port Ethernet2/3

Example #3

- name: standard leaf definition

definition: dc-1/pod-1/leaf_template
variables:
- not_spine: excludes('spine')
- any_spine: regex('spine\d+')
- any_pod: includes('pod')
- any_pod_spine: any_spine and any_pod*

interfaces:
- Ethernet1: $any_spine:Ethernet1/$
- Ethernet2: $pod1-spine2:any
- any: excludes('spine1'):Ethernet49
- any: excludes('spine2'):Ethernet49
- Ethernet49:

device: $not_spine
port: Ethernet49

- Ethernet50:
device: excludes('spine')
port: Ethernet50

Note: * In a future release.

This example pattern could apply to any node that matches the interface map. In includes the use of variables for
cleaner implementation and pattern re-use.

• Variable not_spine matches any node name where ‘spine’ doesn’t appear in the string

• Variable any_spine matches any node name where the regular expression ‘spine+’ matches the name

• Variable any_pod matches any node name where that includes the name ‘pod’ in it

• Variable any_pod_spine combines variables any_spine and any_pod into a complex variable that includes
any name that matches the regular express ‘spine+’ and the name includes ‘pod’ (not yet supported)

• Interface Ethernet1 must be connected to a node that matches the any_spine pattern and is connected on Ether-
net1/$ (any port on module 1)

• Interface Ethernet2 must be connected to node ‘pod1-spine2’ on any Ethernet port

• Interface any must be connected to any node that doesn’t have ‘spine1’ in the name and is connected on Ether-
net49

• Interface any must be connected to any node that doesn’t have ‘spine2’ in the name and wasn’t already used and
is connected to Ethernet49

• Interface Ethernet49 matches if it is connected to any node that matches the not_spine pattern and is connected
on port 49

• Interface Ethernet50 matches if the node is connected to port Ethernet50 on any node whose name does not
contain ‘spine’

36 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Example #4

- name: sample mlag definition

definition: mlag_leaf_template
variables:
any_spine: includes('spine')
not_spine: excludes('spine')

interfaces:
- Ethernet1: $any_spine:Ethernet1/$
- Ethernet2: $any_spine:any

- Ethernet3: none
- Ethernet4: any
- Ethernet5:

device: includes('oob')
port: any

- Ethernet49: $not_spine:Ethernet49
- Ethernet50: $not_spine:Ethernet50

This is a similar example to #3 that demonstrates how an MLAG pattern might work.

• Variable any_spine defines a pattern that includes the word ‘spine’ in the name

• Variable not_spine defines a pattern that matches the inverse of any_spine

• Interface Ethernet1 matches if it is connected to any_spine on port Ethernet1/$ (any port on module 1)

• Interface Ethernet2 matches if it is connected to any_spine on any port

• Interface 3 matches so long as there is nothing attached to it

• Interface 4 matches so long as something is attached to it

• Interface 5 matches if the node contains ‘oob’ in the name and is connected on any port

• Interface49 matches if it is connected to any device that doesn’t have ‘spine’ in the name and is connected on
Ethernet50

• Interface50 matches if it is connected to any device that doesn’t have ‘spine’ in the name and is connected on
port Ethernet50

2.5.8 More examples

Additional ZTPServer file examples are available on GitHub at the ZTPServer Demo.

2.6 ZTPServer Cookbook

2.6.1 Installation

Recipes

• Install ZTPServer from Github Source
• Install ZTPServer using PIP

2.6. ZTPServer Cookbook 37

https://github.com/arista-eosplus/ztpserver-demo

ZTPServer Documentation, Release 1.3.2

Install ZTPServer from Github Source

Objective

I want to install ZTPServer from source.

Solution

To install the latest code in development:

Change to desired download directory
mkdir -p ~/arista
cd ~/arista
git clone https://github.com/arista-eosplus/ztpserver.git
cd ztpserver
python setup.py build
python setup.py install

Or, to install a specific tagged release:

Change to desired download directory
mkdir -p ~/arista
cd ~/arista
git clone https://github.com/arista-eosplus/ztpserver.git
cd ztpserver
git checkout v1.2.0
python setup.py build
python setup.py install

Explanation

Github is used to store the source code for the ZTPServer and the develop branch always contains the latest publicly
available code. The first method above clones the git repo and automatically checks out the develop branch. We
then build and install using Python.

The second method uses the git checkout command to set your working directory to a specific release of the
ZTPServer. Both methods of installation will produce the files below.

Important Installation Files

• ZTPServer Global Configuration File: /etc/ztpserver/ztpserver.conf

• ZTPServer WSGI App: /etc/ztpserver/ztpserver.wsgi

• ZTPServer Provisioning Files: /usr/share/ztpserver/ known as data_root

• Bootstrap Config File: /usr/share/ztpserver/bootstrap/bootstrap.conf

• Bootstrap Python Script: /usr/share/ztpserver/bootstrap/bootstrap

Install ZTPServer using PIP

Objective

Install ZTPServer using PyPI(pip)

38 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/tree/develop
https://github.com/arista-eosplus/ztpserver/releases

ZTPServer Documentation, Release 1.3.2

Solution

This option assumes you have a server with Python and pip pre-installed. See installing pip.

Once pip is installed, type:

pip install ztpserver

Explanation

The pip install process will install all dependencies and run the install script, leaving you with a ZTPServer instance
ready to configure.

Important Installation Files

• ZTPServer Global Configuration File: /etc/ztpserver/ztpserver.conf

• ZTPServer WSGI App: /etc/ztpserver/ztpserver.wsgi

• ZTPServer Provisioning Files: /usr/share/ztpserver/ known as data_root

• Bootstrap Config File: /usr/share/ztpserver/bootstrap/bootstrap.conf

• Bootstrap Python Script: /usr/share/ztpserver/bootstrap/bootstrap

2.6.2 Client-Side Logging

• Configure Syslog Logging
• Configure XMPP Logging

Configure Syslog Logging

Objective

I want to send client logs to a syslog server or a local file during provisioning.

Solution

Edit the bootstrap configuration file
admin@ztpserver:~# vi /usr/share/ztpserver/bootstrap/bootstrap.conf

Add any syslog servers or files, be sure to choose the level of logging:

logging:

-
destination: <SYSLOG-URL>:<PORT>
level: DEBUG

-
destination: file:/tmp/ztps-log
level: INFO

2.6. ZTPServer Cookbook 39

https://pip.pypa.io/en/latest/installing.html

ZTPServer Documentation, Release 1.3.2

Explanation

The node will request the contents of the bootstrap.confwhen it performs GET /bootstrap/config. Once
the node retrieves this information it will send logs to the destination(s): listed under logging:.

Configure XMPP Logging

Objective

I want to send client logs to specific XMPP server rooms.

Solution

Edit the bootstrap configuration file
admin@ztpserver:~# vi /usr/share/ztpserver/bootstrap/bootstrap.conf

Add any XMPP servers and associated rooms:

xmpp:

domain: <XMPP-SERVER-URL>
username: bootstrap
password: eosplus
rooms:
- ztps
- devops
- admins

Explanation

The node will request the contents of the bootstrap.conf when it performs GET /bootstrap/config
file and try to join the rooms listed with the credentials provided. Typically when joining a room, you would
use a string like, ztps@conference.xmpp-server.example.com. Be sure to just provide the domain:
xmpp-server.example.com leaving out the conference prefix.

Note: In order for XMPP logging to work, a non-EOS user need to be connected to the room specified in boot-
strap.conf, before the ZTP process starts. The room has to be created (by the non-EOS user) before the bootstrap
client starts logging the ZTP process via XMPP.

2.6.3 Server-Side Logging

• Standalone - Redirect Output to file
• Apache - View Standard Logs

40 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Standalone - Redirect Output to file

Objective

When running the ZTPServer in Standalone Mode, the logs just fill up my console so I’d like to be able to redirect the
output to a file.

Solution

With INFO level logging:

admin@ztpserver:~# ztps >~/ztps-console.log 2>&1 &

With DEBUG level logging:

admin@ztpserver:~# ztps --debug >~/ztps-console.log 2>&1 &

Explanation

Here we invoke the ztps process as usual, however we redirect the stdout messages to a predefined file. Of course, be
sure that you have permission to write to the file you have listed.

Apache - View Standard Logs

Objective

I’m running the ZTPServer as a WSGI under Apache, so where do the logs go?

Solution

Typically, you can see each transaction in:

Ubuntu
admin@ztpserver:~# more /var/log/apache2/access.log

Fedora
admin@ztpserver:~# more /var/log/httpd/access_log

And the ZTPServer logs will be in:

Ubuntu
admin@ztpserver:~# more /var/log/apache2/error.log

Fedora
admin@ztpserver:~# more /var/log/httpd/error_log

Explanation

These locations are the default on most standard Apache installs. It might be misleading, but all levels of ZTPServer
logging will end up as an Apache error.

2.6. ZTPServer Cookbook 41

ZTPServer Documentation, Release 1.3.2

Example

[Fri Dec 12 10:49:42.186976 2014] [:error] [pid 864] INFO: [app:115] Logging started for ztpserver
[Fri Dec 12 10:49:42.187112 2014] [:error] [pid 864] INFO: [app:116] Using repository /usr/share/ztpserver

2.6.4 ZTPServer Configuration

• Identify Nodes Based Upon Serial Number
• Identify Nodes Based Upon System MAC Address
• Enable/Disable Topology Validation

Identify Nodes Based Upon Serial Number

Objective

I’d like the ZTPServer to use the switch’s serial number for provisioning. This implies that all node directories in
nodes/ will be named using the serial number.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line identifier and confirm it’s set to serialnumber:

identifier = serialnumber

Restart the ztps process:

If using Apache WSGI
admin@ztpserver:~# service apache2 restart

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps

Explanation

The ZTPServer will use either the System MAC Address or the Serial Number of the switch as its System ID. The
System ID is used to match statically provisioned nodes. Also, when a node is dynamically provisioned, the ZTPServer
will create a new node directory for it in nodes/ and it will be named using the System ID.

42 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Identify Nodes Based Upon System MAC Address

Objective

I’d like the ZTPServer to use the switch’s System MAC Address for provisioning. This implies that all node directories
in nodes/ will be named using the System MAC Address.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line identifier and confirm it’s set to systemmac:

identifier = systemmac

Restart the ztps process:

If using Apache WSGI
admin@ztpserver:~# service apache2 restart

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps

Explanation

The ZTPServer will use either the System MAC Address or the Serial Number of the switch as its System ID. The
System ID is used to match statically provisioned nodes. Also, when a node is dynamically provisioned, the ZTPServer
will create a new node directory for it in nodes/ and it will be named using the System ID.

Enable/Disable Topology Validation

Objective

Topology Validation uses LLDP Neighbor information to make sure you have everything wired up correctly. Topology
Validation is enabled/disabled in the main ztpserver.conf configuration file.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line disable_topology_validation

To disable Topology Validation
disable_topology_validation = True

2.6. ZTPServer Cookbook 43

ZTPServer Documentation, Release 1.3.2

To enable Topology Validation
disable_topology_validation = False

Restart the ztps process:

If using Apache WSGI
admin@ztpserver:~# service apache2 restart

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps

Explanation

This configuration option enables/disables Topology Validation. This feature is extremely powerful and can help you
confirm all of your nodes are wired up correctly. See the recipes under Topology Validation to learn more about the
flexibility of Topology Validation.

2.6.5 Running the ZTPServer

• Standalone - Change the ZTPServer Interface
• Standalone - Run ZTPServer on a Specific Port
• Standalone - Run ZTPServer in a Sub-directory
• Apache - Run ZTPServer on a Specific Port
• Apache - Run ZTPServer in a Sub-directory
• Change ZTPServer File Ownership
• Apache - Configure SELinux Permissions

Standalone - Change the ZTPServer Interface

Objective

I only want the ZTPServer process to listen on a specific network interface.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line interface in the [server] group.

To listen on all interfaces
interface = 0.0.0.0

To listen on a specific interface
interface = 192.0.2.100

44 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Restart the ztps process:

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps &

Explanation

This recipe helps you define a specific interface for the ZTPServer to listen on.

Note: Be sure the interface coincides with the server_url value in the configuration file.

Standalone - Run ZTPServer on a Specific Port

Objective

I want to define which port the ZTPServer listens on.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line port in the [server] group.

Choose a port of your liking
port = 8080

Restart the ztps process:

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps &

Explanation

This recipe helps you define a specific port for the ZTPServer to listen on.

Note: Be sure the port coincides with the server_url value in the configuration file.

Standalone - Run ZTPServer in a Sub-directory

Objective

I don’t want to run the ZTPServer at the root of my domain, I want it in a sub-directory.

2.6. ZTPServer Cookbook 45

ZTPServer Documentation, Release 1.3.2

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line server_url in the [default] group.

Choose a subdirectory
server_url = http://ztpserver:8080/not/in/root/anymore

Restart the ztps process:

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps &

Explanation

The server_url key defines where the REST API lives. You do not need to change any of your file locations to
affect change. Simply change the key above.

Note: You can confirm the change by doing a simple wget http://server:port/new/directory/path/bootstrap
to retrieve the bootstrap script.

Apache - Run ZTPServer on a Specific Port

Objective

I’m running ZTPServer as a WSGI with Apache and want to change what port it listens on.

Solution

Apache configurations can vary widely, and the ZTPServer has no control over this, so view this simply as a suggestion.

Open up your Apache configuration file:

Apache
admin@ztpserver:~# vi /etc/apache2/sites-enabled/ztpserver.conf

HTTPd
admin@ztpserver:~# vi /etc/httpd/conf.d/ztpserver.conf

Change the Listen and VirtualHost values to the desired port.

LoadModule wsgi_module modules/mod_wsgi.so
Listen 8080

<VirtualHost *:8080>

WSGIDaemonProcess ztpserver user=www-data group=www-data threads=50
WSGIScriptAlias / /etc/ztpserver/ztpserver.wsgi

46 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Required for RHEL
#WSGISocketPrefix /var/run/wsgi

<Location />
WSGIProcessGroup ztpserver
WSGIApplicationGroup %{GLOBAL}

For Apache <= 2.2, use Order and Allow
Order deny,allow
Allow from all
For Apache >= 2.4, Allow is replaced by Require
Require all granted

</Location>

Override default logging locations for Apache
#ErrorLog /path/to/ztpserver_error.log
#CustomLog /path/to/ztpserver_access.log

</VirtualHost>

Restart the ztps process:

Restart Apache
admin@ztpserver:~# service apache2 restart

Explanation

When you run ZTPServer as a WSGI under Apache or like server, the interface and port that are used for listening
for HTTP requests are controlled by the web server. The config snippet above shows how this might be done with
Apache, but note that variations might arise in your own environment.

Apache - Run ZTPServer in a Sub-directory

Objective

I’m running ZTPServer as a WSGI with Apache and I want to change the path that the REST API resides.

Solution

WSGI-compliant webserver configurations can vary widely, so here’s a sample of how this is done with Apache.

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line server_url in the [default] group.

Choose a subdirectory
server_url = http://ztpserver:8080/not/in/root/anymore

You might think that you have to change your Apache conf to move this to a sub-directory, but you don’t. Your config
should look like the block below. Note the <Location />.

LoadModule wsgi_module modules/mod_wsgi.so
Listen 8080

2.6. ZTPServer Cookbook 47

ZTPServer Documentation, Release 1.3.2

<VirtualHost *:8080>

WSGIDaemonProcess ztpserver user=www-data group=www-data threads=50
WSGIScriptAlias / /etc/ztpserver/ztpserver.wsgi
Required for RHEL
#WSGISocketPrefix /var/run/wsgi

<Location />
WSGIProcessGroup ztpserver
WSGIApplicationGroup %{GLOBAL}

For Apache <= 2.2, use Order and Allow
Order deny,allow
Allow from all
For Apache >= 2.4, Allow is replaced by Require
Require all granted

</Location>

Override default logging locations for Apache
#ErrorLog /path/to/ztpserver_error.log
#CustomLog /path/to/ztpserver_access.log

</VirtualHost>

Restart the ztps process:

Restart Apache
admin@ztpserver:~# service apache2 restart

Explanation

It might seem counter-intuitive but the Apache configuration should use the Location directive to point
at root. The desired change to the path is done by the ZTPServer server_url configuration value in
/etc/ztpserver/ztpserver.conf.

Change ZTPServer File Ownership

Objective

I’d like all of the ZTPServer provisioning files to be owned by a particular user/group.

Note: This is most often needed when running the ZTPServer WSGI App and the apache user is unable to read/write
to /usr/share/ztpserver.

Solution

admin@ztpserver:~# chown -R myUser:myGroup /usr/share/ztpserver
admin@ztpserver:~# chmod -R ug+rw /usr/share/ztpserver

48 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Explanation

The shell commands listed above set ownership and permissions for the default data_root location
/usr/share/ztpserver. Be mindful that if you are running the ZTPServer WSGI App, the mod_wsgi dae-
mon user must be able to read/write to these files.

Note: When running the ZTPServer WSGI App, you should also check the ownership and permission of
/etc/ztpserver/ztpserver.wsgi.

Apache - Configure SELinux Permissions

Objective

My server has SELinux enabled and I’d like to set the ZTPServer file type so that Apache can read/write files in the
data_root.

Note: This is most often needed when running the ZTPServer WSGI App and the apache user is unable to read/write
to /usr/share/ztpserver.

Solution

For Fedora - httpd
admin@ztpserver:~# chcon -Rv --type=httpd_sys_script_rw_t /usr/share/ztpserver

For Ubuntu - Apache
admin@ztpserver:~# chcon -R -h system_u:object_r:httpd_sys_script_rw_t /usr/share/ztpserver

Explanation

The shell commands listed above set the SELinux file attributes so that Apache can read/write to the files. This is
often the case since /usr/share/ztpserver is not in the normal operating directory /var/www/. Note that the
commands above are suggestions and you might consider tweaking them to suit your own environment.

2.6.6 Hello World - A Simple Provisioning Example

• Prepare Your Switch for Provisioning
• Add a Static Node Entry
• Create a Startup-Config with Minimal Configuration
• Add Event Handler to Backup the startup-config to the ZTPServer
• Install a Specific (v)EOS Version
• Start ZTPServer in Standalone Mode

Introduction

The following set of recipes will help you perform a basic provisioning task using the ZTPServer. There are some
assumptions:

• You have already installed the ZTPServer

2.6. ZTPServer Cookbook 49

ZTPServer Documentation, Release 1.3.2

• You have performed the basic configuration to define which interface and port the server will run on.

• You have a DHCP server running with option bootfile-name
"http://<ZTPSERVER-URL>:<PORT>/bootstrap"; Sample config

• Your test (v)EOS node can receive DHCP responses

• Make sure the ztps process is not running

Note: If you would like to test this in a virtual environment, please see the packer-ztpserver Github repo to learn
how to automatically install a ZTPServer with all of the complementary services (DHCP, DNS, NTP, XMPP, and
SYSLOG). Both Virtual Box and VMware are supported.

Prepare Your Switch for Provisioning

Objective

I want to prepare my test device (vEOS or EOS) for use with the ZTPServer. This will put your switch into ZTP Mode,
so backup any configs you want to save.

Solution

Log into your (v)EOS node, then:

switch-name> enable
switch-name# write erase
Proceed with erasing startup configuration? [confirm] y
switch-name# reload now

Explanation

ZTP Mode is enabled when a switch boots and there is no startup-config (or it’s empty) found in /mnt/flash/.
Therefore, we use the write erase command to clear the current startup-config and use reload now to reboot
the switch. When the switch comes up you will see it enter ZTP Mode and begin sending DHCP requests on all
interfaces.

Add a Static Node Entry

Objective

I want to provision my switch based upon its System MAC Address.

Solution

Log into your (v)EOS node to get its MAC Address. If it’s in ZTP Mode, just log in with username admin:

switch-name> show version

Note: Copy the System MAC Address for later.

Confirm your ZTPServer Configuration will identify a node based upon its MAC:

50 Chapter 2. Features

https://github.com/arista-eosplus/packer-ztpserver/blob/master/Fedora/conf/dhcpd.conf
https://github.com/arista-eosplus/packer-ztpserver

ZTPServer Documentation, Release 1.3.2

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line identifier and confirm it’s set to systemmac:

identifier = systemmac

Finally, let’s create a nodes directory for this device:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the nodes directory, where all node information is stored
admin@ztpserver:~# cd nodes

Create a directory using the MAC Address you found earlier
admin@ztpserver:~# mkdir 001122334455

Explanation

A node is considered to be statically provisioned when a directory with its System ID is already located in the nodes/
directory.

Note that the System ID can be the node’s System MAC Address or its Serial Number. In this case we chose to use
the systemmac since vEOS nodes don’t have a Serial Number by default.

Just adding this directory is not enough to provision the node. The remaining recipes will finish off the task.

Create a Startup-Config with Minimal Configuration

Objective

When my node is provisioned, I want it to be passed a static startup-config. This config will include some basic
Management network info including syslog and ntp. It will set the admin user’s password to admin, and enable eAPI.

Solution

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the specific node directory that you created earlier
admin@ztpserver:~# cd nodes/001122334455

Create a startup-config
admin@ztpserver:~# vi startup-config

Copy and paste this startup-config, changing values where you see fit:

!
hostname test-node-1
ip name-server vrf default <DNS-SERVER-IP>
!
ntp server <NTP-SERVER-IP>
!
username admin privilege 15 role network-admin secret admin
!

2.6. ZTPServer Cookbook 51

ZTPServer Documentation, Release 1.3.2

interface Management1
ip address <MGMT-IP-ADDRESS>/<SUBNET>

!
ip access-list open
10 permit ip any any

!
ip route 0.0.0.0/0 <DEFAULT-GW>
!
ip routing
!
management api http-commands
no shutdown

!
banner login
Welcome to $(hostname)!
This switch has been provisioned using the ZTPServer from Arista Networks
Docs: http://ztpserver.readthedocs.org/
Source Code: https://github.com/arista-eosplus/ztpserver
EOF
!
end

Explanation

When the ZTPServer receives a request from your node to begin provisioning, it will find the directory
nodes/001122334455 and know that this node is statically configured. In this case, a startup-config must
be present. In practice, the ZTPServer tells the node to perform the config_replace action with this file as the
source.

Add Event Handler to Backup the startup-config to the ZTPServer

Objective

I want to backup the latest startup-config from my node so that if I make changes or have to replace the node I have
the latest copy.

Note: By adding this, the node will perform an HTTP PUT and overwrite the
nodes/001122334455/startup-config file.

Solution

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the specific node directory that you created earlier
admin@ztpserver:~# cd nodes/001122334455

Edit your startup-config
admin@ztpserver:~# vi startup-config

Add the following lines to your startup-config, changing values where needed:

52 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

event-handler configpush
trigger on-startup-config
! For default VRF, make sure to update the ztpserver url
action bash export SYSMAC=`FastCli -p 15 -c 'show ver | grep MAC | cut -d" " -f 5' | sed 's/[.]*//g'`; curl http://<ZTPSERVER-URL>:<PORT>/nodes/$SYSMAC/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT
! For non-default VRF, update and use:
! action bash export SYSMAC=`FastCli -p 15 -c 'show ver | grep MAC | cut -d" " -f 5' | sed 's/[.]*//g'`; ip netns exec ns-<VRF-NAME> curl http://<ZTPSERVER-URL>:<PORT>/nodes/$SYSMAC/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Explanation

By adding this line to the startup-config, this configuration will be sent down to the node during provisioning. From
that point onward, the node will perform and HTTP PUT of the startup-config and the ZTPServer will overwrite the
startup-config file in the node’s directory.

Install a Specific (v)EOS Version

Objective

I want a specific (v)EOS version to be automatically installed when I provision my node.

Note: This assumes that you’ve already downloaded the desired (v)EOS image from Arista.

Solution

Let’s create a place on the ZTPServer to host some SWIs:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create an images directory
admin@ztpserver:~# mkdir -p files/images

SCP your SWI into the images directory, name it whatever you like
admin@ztpserver:~# scp admin@otherhost:/tmp/vEOS.swi files/images/vEOS_4.14.5F.swi

Now let’s create a definition that performs the install_image action:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the specific node directory that you created earlier
admin@ztpserver:~# cd nodes/001122334455

Create a definition file
admin@ztpserver:~# vi definition

Add the following lines to your definition, changing values where needed:

name: static node definition
actions:

-
action: install_image
always_execute: true

2.6. ZTPServer Cookbook 53

https://www.arista.com/en/support/software-download

ZTPServer Documentation, Release 1.3.2

attributes:
url: files/images/vEOS_4.14.5F.swi
version: 4.14.5F

name: "Install 4.14.5F"

Note: The definition uses YAML syntax

Explanation

The definition is where we list all of the actions we want the node to execute during the provisioning process. In
this case we are hosting the SWI on the ZTPServer, so we just define the url in relation to the data_root. We
could change the url to point to another server altogether - the choice is yours. The benefit in hosting the file on the
ZTPServer is that we perform an extra checksum step to validate the integrity of the file.

In practice, the node requests its definition during the provisioning process. It sees that it’s supposed to perform the
install_image action, so it requests the install_image python script. It then performs an HTTP GET for the
url. Once it has these locally, it executes the install_image script.

Start ZTPServer in Standalone Mode

Objective

Okay, enough reading and typing; let’s push some buttons!

Solution

Let’s run the ZTPServer in Standalone Mode since this is just a small test. Login to your ZTPServer:

Start the ZTPServer - console loggin will appear
admin@ztpserver:~# ztps
INFO: [app:115] Logging started for ztpserver
INFO: [app:116] Using repository /usr/share/ztpserver
Starting server on http://<ZTPSERVER-URL>:<PORT>

Explanation

The easiest way to run the ZTPServer is in Standalone Mode - which is done by typing ztps in a shell. This will cause
the configured interface and port to start listening for HTTP requests. Your DHCP server will provide the node with
option bootfile-name "http://<ZTPSERVER-URL>:<PORT>/bootstrap" in the DHCP response,
which lets the node know where to grab the bootstrap script.

A Quick Overview of the Provisioning Process for this Node

1. GET /bootstrap: The node gets the bootstrap script and begins executing it. The following requests are made
while the bootstrap script is being executed.

2. GET /bootstrap/config: The node gets the bootstrap config which contains XMPP and Syslog information for
the node to send logs to.

3. POST /nodes: The node sends information about itself in JSON format to the ZTPServer. The ZTPServer
parses this info and finds the System MAC. It looks in the nodes/ directory and finds a match.

4. GET /nodes/001122334455: The node requests its definition and learns what resources it has to retrieve.

54 Chapter 2. Features

http://ztpserver.readthedocs.org/en/master/config.html#actions
https://github.com/arista-eosplus/ztpserver/blob/develop/actions/install_image
http://ztpserver.readthedocs.org/en/master/startup.html#standalone-debug-server

ZTPServer Documentation, Release 1.3.2

5. GET /actions/install_image: The node retrieves the install_image script.

6. GET /files/images/vEOS_4.14.5F.swi: The node retrieves the SWI referenced in the definition.

7. GET /meta/files/images/vEOS_4.14.5F.swi: The node retrieves the checksum of the SWI for validation and
integrity.

8. GET /actions/replace_config: The node retrieves the replace_config script.

9. GET /nodes/001122334455/startup-config: The node retrieves the startup-config we created earlier.

10. GET /meta/nodes/001122334455/startup-config: The node retrieves the checksum of the startup-config.

11. Node Applies Config and Reboots

12. PUT /nodes/001122334455/startup-config: The node uploads its current startup-config.

2.6.7 Provision a Static Node

• Add a Static Node Entry
• Create a Startup-Config File
• Create a Pattern (Topology Validation enabled)
• Create a Definition File
• Create an Attributes File
• Symlink to a Generic Definition

Add a Static Node Entry

Objective

I want to provision my switch based upon its System ID (System MAC Address or Serial Number).

Solution

Log into your (v)EOS node to get its System ID. If it’s in ZTP Mode, just log in with username admin:

switch-name> show version

Note: Copy down the System ID (System MAC Address or Serial Number).

Let’s create a node directory for this device:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the nodes directory, where all node information is stored
admin@ztpserver:~# cd nodes

Create a directory using the MAC Address you found earlier
admin@ztpserver:~# mkdir <SYSTEM_ID>

2.6. ZTPServer Cookbook 55

ZTPServer Documentation, Release 1.3.2

Explanation

A node is considered to be statically provisioned when a directory with its System ID is already located in the nodes/
directory.

Note that the System ID can be the node’s System MAC Address or its Serial Number.

Just adding this directory is not enough to provision the node. The remaining recipes will finish off the task. To
successfully provision a node statically, you will need to create:

• startup-config

• pattern file - if Topology Validation is enabled

• definition - if you choose to apply other actions during provisioning

and place them in [data_root]/nodes/<SYSTEM_ID>.

Note: Confirm your ZTPServer Configuration will identify a node based upon the desired System ID by checking
/etc/ztpserver/ztpserver.conf and check the value of identifier

Create a Startup-Config File

Objective

I want the node to receive a startup-config during provisioning.

Solution

Create a file named startup-config in [data_root]/nodes/<SYSTEM_ID>/.

Go to your data_root - by default it’s /usr/share/ztpserver admin@ztpserver:~# cd /usr/share/ztpserver

Move to the node directory you created above. admin@ztpserver:~# cd nodes/<SYSTEM_ID>

Create/edit the startup-config file admin@ztpserver:~# vi startup-config

Place the desired configuration into the startup-config. Here’s an example. Please change values where you see fit:

!
hostname test-node-1
ip name-server vrf default <DNS-SERVER-IP>
!
ntp server <NTP-SERVER-IP>
!
username admin privilege 15 role network-admin secret admin
!
interface Management1
ip address <MGMT-IP-ADDRESS>/<SUBNET>

!
ip access-list open
10 permit ip any any

!
ip route 0.0.0.0/0 <DEFAULT-GW>
!
ip routing
!
management api http-commands

56 Chapter 2. Features

mailto:admin@ztpserver
mailto:admin@ztpserver
mailto:admin@ztpserver

ZTPServer Documentation, Release 1.3.2

no shutdown
!
banner login
Welcome to $(hostname)!
This switch has been provisioned using the ZTPServer from Arista Networks
Docs: http://ztpserver.readthedocs.org/
Source Code: https://github.com/arista-eosplus/ztpserver
EOF
!
end

Explanation

A startup-config file is required when you statically provision a node. The format of the startup-config is the same as
you are used to, which can be found on your switch at file:startup-config (/mnt/flash/startup-config)

Create a Pattern (Topology Validation enabled)

Objective

I have created a static node directory and Topology Validation is enabled, so I would like to make sure everything is
wired up correctly before provisioning a node.

Note: YAML syntax can be a pain sometimes. The indentation is done with spaces and not tabs.

Solution

Create a file named pattern in [data_root]/nodes/<SYSTEM_ID>/ and define the LLDP associations.

Go to your data_root - by default it’s /usr/share/ztpserver admin@ztpserver:~# cd /usr/share/ztpserver

Move to the node directory you created above. admin@ztpserver:~# cd nodes/<SYSTEM_ID>

Create/edit the pattern file admin@ztpserver:~# vi pattern

Example 1: Match any neighbor

This pattern essentially disables Topology Validation.

name: Match anything
interfaces:

- any: any:any

Example 2: Match any interface on a specific neighbor

This pattern says, the node being provisioned must be connected to a neighbor with hostname pod1-spine1 but it
can be connected to any peer interface.

name: Anything on pod1-spine1
interfaces:

- any: pod1-spine1:any

2.6. ZTPServer Cookbook 57

mailto:admin@ztpserver
mailto:admin@ztpserver
mailto:admin@ztpserver

ZTPServer Documentation, Release 1.3.2

Example 3: Match specific interface on a specific neighbor

This pattern says, the node being provisioned must be connected to a neighbor with hostname pod1-spine1 on
Ethernet1.

name: Anything on pod1-spine1
interfaces:

- any: pod1-spine1:Ethernet1

Example 4: Make sure I’m not connected to a node

This pattern is the same as Example #2, but we add another check to make sure the node being provisioned is not
connected to any spines in pod2.

name: Not connected to anything in pod2
interfaces:

- any: pod1-spine1:any
- any: regex('pod2-spine\d+'):none
- none: regex('pod2-spine\d+'):any #equivalent to line above

Example 5: Using variables in the pattern

This pattern is similar to what you’ve seen above except we use variables to make things easier.

name: Not connected to any spine in pod2
variables:

- not_pod2: regex('pod2-spine\d+')
interfaces:

- any: pod1-spine1:any
- any: $not_pod2:none

Explanation

Pattern files are YAML-based and are the underpinnings of Topology Validation. A node will not be successfully
provisioned if it cannot pass all of the interface tests contained within the pattern file. The examples above are just a
small sample of the complex associations you can create. Take a look at the neighbordb section to learn more.

Note: YAML can be a pain, and invalid YAML syntax will cause provisioning to fail. You can make sure your syntax
is correct by using a tool like YAMLlint

Create a Definition File

Objective

Aside from sending the node a startup-config, I’d like to upgrade the node to a specific v(EOS) version.

Solution

These types of system changes are accomplished via the definition file. The definition is a YAML-based file with
a section for each action that you want to execute.

Note: Learn more about Actions.

58 Chapter 2. Features

http://ztpserver.readthedocs.org/en/master/config.html#dynamic-provisioning-neighbordb
http://www.yamllint.com
http://ztpserver.readthedocs.org/en/master/config.html#actions

ZTPServer Documentation, Release 1.3.2

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create an images directory
admin@ztpserver:~# mkdir -p files/images

SCP your SWI into the images directory, name it whatever you like
admin@ztpserver:~# scp admin@otherhost:/tmp/vEOS.swi files/images/vEOS_4.14.5F.swi

Now let’s create a definition that performs the install_image action:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Move to the specific node directory that you created earlier
admin@ztpserver:~# cd nodes/<SYSTEM_ID>

Create a definition file
admin@ztpserver:~# vi definition

Add the following lines to your definition, changing values where needed:

name: static node definition
actions:

-
action: install_image
always_execute: true
attributes:

url: files/images/vEOS_4.14.5F.swi
version: 4.14.5F

name: "Install 4.14.5F"

Explanation

The definition is where we list all of the actions we want the node to execute during the provisioning process. In
this case we are hosting the SWI on the ZTPServer, so we just define the url in relation to the data_root. We
could change the url to point to another server altogether - the choice is yours. The benefit in hosting the file on the
ZTPServer is that we perform an extra checksum step to validate the integrity of the file.

In practice, the node requests its definition during the provisioning process. It sees that it’s supposed to perform the
install_image action, so it requests the install_image python script. It then performs an HTTP GET for the
url. Once it has these locally, it executes the install_image script.

Create an Attributes File

Objective

I want to use variables in my definition and abstract the values to a unique file. These variables will be sent down to
the node during provisioning and be used while the node is executing the actions listed in the definition.

Solution

Create a file named attributes in [data_root]/nodes/<SYSTEM_ID>/.

2.6. ZTPServer Cookbook 59

http://ztpserver.readthedocs.org/en/master/config.html#actions
https://github.com/arista-eosplus/ztpserver/blob/develop/actions/install_image

ZTPServer Documentation, Release 1.3.2

Go to your data_root - by default it’s /usr/share/ztpserver admin@ztpserver:~# cd /usr/share/ztpserver

Move to the node directory you created above. admin@ztpserver:~# cd nodes/<SYSTEM_ID>

Move to the node directory you created above. admin@ztpserver:~# vi attributes

Here’s the different type of ways to define the attributes:

Example 1: A simple key/value pair

ntp_server: ntp.example.com
dns_server: ns1.example.com

Example 2: key/dictionary

system_config:

ntp: ntp.example.com
dns: ns1.example.com

Example 3: key/list (note the hyphens)

dns_servers:

- ns1.example.com
- ns2.example.com
- ns3.example.com
- ns4.example.com

Example 4: Referencing another variable

ntp_server: ntp.example.com
other_var: $ntp_server

Borrowing from the definition recipe above, we can replace some values with variables from the attributes file:

nodes/<SYSTEM_ID>/definition

name: static node definition
actions:

-
action: install_image
always_execute: true
attributes:

url: $swi_url
version: $swi_version

name: $swi_name

and the nodes/<SYSTEM_ID>/attributes

swi_url: files/images/vEOS_4.14.5F.swi
swi_version: 4.14.5F
swi_name: "Install 4.14.5F"

Explanation

The attributes file is optional. The variables that are contained within it are sent to the node during provisioning.
In the final example above you can see how the attributes file and definition work in concert. Note that the ZTPServer

60 Chapter 2. Features

mailto:admin@ztpserver
mailto:admin@ztpserver
mailto:admin@ztpserver

ZTPServer Documentation, Release 1.3.2

performs variable substitution when the node requests the definition via GET /nodes/<SYSTEM_ID>. By removing
the static values from the definition, we can use the same definition for multiple nodes (using symlink) and just create
unique attributes files in the node’s directory.

It’s important to note that these variables can exist in different places and accomplish the same task. In this recipe we
created a unique attributes file, which lives in the node’s directory. You can also put these attributes directly into the
definition file like the example below.

Example: At the global scope of the definition

name: static node definition
actions:

-
action: install_image
always_execute: true
attributes:

url: $swi_url
version: $swi_version

name: $swi_name
attributes:

swi_url: files/images/vEOS_4.14.5F.swi
swi_version: 4.14.5F
swi_name: "Install 4.14.5F"

Symlink to a Generic Definition

Objective

I’d like to use the same definition for multiple static node directories without manually updating each one.

Solution

Create one definition in the [data_root]/definitions folder and create a symlink to the specific
[data_root]/nodes/<SYSTEM_ID>/ folder.

‘‘[data_root]/definitions/static_node_definition

name: static node definition
actions:

-
action: install_image
always_execute: true
attributes:

url: $swi_url
version: $swi_version

name: $swi_name

and the nodes/<SYSTEM_ID>/attributes

swi_url: files/images/vEOS_4.14.5F.swi
swi_version: 4.14.5F
swi_name: "Install 4.14.5F"

then create the symlink

2.6. ZTPServer Cookbook 61

ZTPServer Documentation, Release 1.3.2

Go to your node's unique directory
admin@ztpserver:~# cd /usr/share/ztpserver/nodes/<SYSTEM_ID>

Create the symlink
admin@ztpserver:~# ln -s /usr/share/ztpserver/definitions/static_node_definition ./definition

Explanation

The steps above let you reuse a single definition file for many static nodes. Note that the variables are located in the
attributes file in the nodes/<SYSTEM_ID>/ folder.

2.6.8 Provision a Dynamic Node

• Using Open Patterns
• Identify a Node Based Upon Specific Neighbor
• Identify a Node’s Neighbors Using Regex

Using Open Patterns

Objective

I want to provision a node without knowing anything about it. I just want it to receive a default configuration.

Solution

You can accomplish this by using neighbordb. Neighbordb contains associations between LLDP neighbor patterns
and definitions. So if we use a pattern that matches anything, we can use it to assign a simple, default definition.

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Add the following lines to your definition, changing values where needed:

patterns:

- name: Default Pattern
definition: default
interfaces:

- any: any:any

If you happen to be provisioning a node in isolation and the node does not have any neighbors, use the following
pattern:

patterns:

- name: Default Pattern
definition: default

62 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

interfaces:
- none: none:none

Then add a definition to [data_root]/definitions/default

Note: See the sections on Definitions and Actions to learn more.

Explanation

By placing this pattern in your neighbordb, the ZTPServer will allow this node to be provisioned and will assign it the
default definition. Use caution when placing this pattern in your neighbordb as it might allow nodes to receive the
default definition when you intend them to receive another pattern.

Identify a Node Based Upon Specific Neighbor

Objective

I want my node to be dynamically provisioned based upon a specific LLDP neighbor association.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:

- name: tora for pod1
definition: tora
interfaces:

- Ethernet1: dc1-pod1-spine1:Ethernet1

This pattern says that the node being provisioned must have a connection between its Ethernet1 and dc1-pod1-spine1’s
Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node executes the bootstrap script it will
send the ZTPServer some information about itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it next checks neighbordb to try
and find a match. The ZTPServer will analyze the nodes LLDP neighbors, find the match in neighbordb and then
apply the tora definition.

2.6. ZTPServer Cookbook 63

ZTPServer Documentation, Release 1.3.2

Identify a Node’s Neighbors Using Regex

Objective

I want my node to be dynamically provisioned and I’d like to match certain neighbors using regex.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:

- name: tora for pod1
definition: tora
interfaces:

- Ethernet1: regex('dc1-pod1-spine\D+'):Ethernet1

This pattern says that the node being provisioned must have a connection between its Ethernet1 and any dc1-pod1-
spines Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node executes the bootstrap script it will
send the ZTPServer some information about itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it next checks neighbordb to try
and find a match. The ZTPServer will analyze the nodes LLDP neighbors, find the match in neighbordb and then
apply the tora definition.

Note: There are a few different functions that you can use other than regex(). Check out this section to learn more.

2.6.9 Topology Validation

• Enable/Disable Topology Validation
• Allow Any Neighbor
• Match Pattern with Exact String
• Match Pattern Using a Regular Expression
• Match Pattern That Includes a String
• Match Pattern That Excludes a String

64 Chapter 2. Features

http://ztpserver.readthedocs.org/en/master/config.html#variables

ZTPServer Documentation, Release 1.3.2

Enable/Disable Topology Validation

Objective

Topology Validation uses LLDP Neighbor information to make sure you have everything wired up correctly. Topology
Validation is enabled/disabled in the main ztpserver.conf configuration file.

Solution

Open up the global ZTPServer configuration file:

admin@ztpserver:~# vi /etc/ztpserver/ztpserver.conf

Look for the line disable_topology_validation

To disable Topology Validation
disable_topology_validation = True

#To enable Topology Validation
disable_topology_validation = False

Restart the ztps process:

If using Apache WSGI
admin@ztpserver:~# service apache2 restart

If running in Standalone Mode, stop ztps
admin@ztpserver:~# pkill ztps

Then start it again
admin@ztpserver:~# ztps

Explanation

This configuration option enables/disables Topology Validation. This feature is extremely powerful and can help you
confirm all of your nodes are wired up correctly. See the recipes below to learn more about the flexibility of Topology
Validation.

Allow Any Neighbor

Objective

I want to provision a node without knowing anything about it. I just want it to receive a default configuration.

Solution

You can accomplish this by using neighbordb. Neighbordb contains associations between LLDP neighbor patterns
and definitions. So if we use a pattern that matches anything, we can use it to assign a simple, default definition.

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

2.6. ZTPServer Cookbook 65

ZTPServer Documentation, Release 1.3.2

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Add the following lines to your definition, changing values where needed:

patterns:

- name: Default Pattern
definition: default
interfaces:

- any: any:any

If you happen to be provisioning a node in isolation and the node does not have any neighbors, use the following
pattern:

patterns:

- name: Default Pattern
definition: default
interfaces:

- none: none:none

Then add a definition to [data_root]/definitions/default

Note: See the sections on Definitions and Actions to learn more.

Explanation

By placing this pattern in your neighbordb, the ZTPServer will allow this node to be provisioned and will assign it the
default definition. Use caution when placing this pattern in your neighbordb as it might allow nodes to receive the
default definition when you intend them to receive another pattern.

Match Pattern with Exact String

Objective

I want my node to be dynamically provisioned based upon a specific LLDP neighbor association.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:

- name: tora for pod1
definition: tora

66 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

interfaces:
- Ethernet1: dc1-pod1-spine1:Ethernet1

This pattern says that the node being provisioned must have a connection between its Ethernet1 and dc1-pod1-spine1’s
Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node executes the bootstrap script it will
send the ZTPServer some information about itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it next checks neighbordb to try
and find a match. The ZTPServer will analyze the nodes LLDP neighbors, find the match in neighbordb and then
apply the tora definition.

Match Pattern Using a Regular Expression

Objective

I want my node to be dynamically provisioned and I’d like to match certain neighbors using regex.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:

- name: tora for pod1
definition: tora
interfaces:

- Ethernet1: regex('dc1-pod1-spine\D+'):Ethernet1

This pattern says that the node being provisioned must have a connection between its Ethernet1 and any dc1-pod1-
spines Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node executes the bootstrap script it will
send the ZTPServer some information about itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it next checks neighbordb to try
and find a match. The ZTPServer will analyze the nodes LLDP neighbors, find the match in neighbordb and then
apply the tora definition.

Note: There are a few different functions that you can use other than regex(). Check out this section to learn more.

2.6. ZTPServer Cookbook 67

http://ztpserver.readthedocs.org/en/master/config.html#variables

ZTPServer Documentation, Release 1.3.2

Match Pattern That Includes a String

Objective

I want my node to be dynamically provisioned and I’d like to match certain neighbors as long as the neighbor hostname
includes a certain string.

Solution

Modify your neighbordb:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:

- name: tora for pod1
definition: tora
interfaces:

- Ethernet1: includes('dc1-pod1'):Ethernet1

This pattern says that the node being provisioned must have a connection between its Ethernet1 and any hostname that
includes dc1-pod1 Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node executes the bootstrap script it will
send the ZTPServer some information about itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it next checks neighbordb to try
and find a match. The ZTPServer will analyze the nodes LLDP neighbors, find the match in neighbordb and then
apply the tora definition.

Match Pattern That Excludes a String

Objective

I want my node to be dynamically provisioned and I’d like to match certain neighbors as long as the neighbor hostname
excludes a certain string.

Solution

Using the excludes() function allows you to match the inverse of the includes() function.

Modify your neighbordb:

68 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Modify your neighbordb
admin@ztpserver:~# vi neighbordb

Then add the pattern that includes the required match.

patterns:

- name: tora for pod1
definition: tora
interfaces:

- Ethernet1: includes('dc1-pod1'):Ethernet1
- any: excludes('spine'):Ethernet50

This pattern says that the node being provisioned must have a connection between its Ethernet1 and any hostname that
includes dc1-pod1 Ethernet1.

Explanation

In this recipe we use neighbordb to link a pattern with a definition. When a node executes the bootstrap script it will
send the ZTPServer some information about itself. The ZTPServer will not find any existing directory with the node’s
System-ID (System MAC or Serial Number depending upon your configuration) so it next checks neighbordb to try
and find a match. The ZTPServer will analyze the nodes LLDP neighbors, find the match in neighbordb and then
apply the tora definition.

2.6.10 Definitions

• Add an Action to a Definition
• Add Global Variables to Definition
• Add Custom Log Statements as Action Executes

Add an Action to a Definition

Objective

I want to use one of the built-in actions in my definition file.

Solution

You can choose any of the pre-built actions to include in your definition.

Note: Learn more about Actions.

In this example we’ll copy a python script to the node and set its permissions.

actions:

-

2.6. ZTPServer Cookbook 69

http://ztpserver.readthedocs.org/en/master/config.html#actions

ZTPServer Documentation, Release 1.3.2

action: copy_file
always_execute: true
attributes:

dst_url: /mnt/flash/
mode: 777
overwrite: if-missing
src_url: files/automate/bgpautoinf.py

name: "automate BGP peer interface config"

Explanation

Here we add the copy_file action to our definition. The attributes listed in the action will be passed to the node so
that it is able to retrieve the script from [SERVER_URL]/files/automate/bgpautoinf.py. Since we are
using overwrite: if-missing, the action will only copy the file to the node if it does not already exist.

Note: For more Action recipes see the Actions section.

Add Global Variables to Definition

Objective

I want to use a variable throughout my definition without having to define it more than once.

Solution

You can accomplish this by adding an attributes section at the root level of your definition file.

Note: Learn more about Actions.

In this example, we have two different actions that reference the same $mode and $dst variables.

actions:

-
action: copy_file
always_execute: true
attributes:

dst_url: $dst
mode: $mode
overwrite: if-missing
src_url: files/automate/bgpautoinf.py

name: "Copy automate BGP script to node"
-
action: copy_file
always_execute: true
attributes:

dst_url: $dst
mode: $mode
overwrite: if-missing
src_url: files/automate/superautomate.py

name: "Copy awesome script to my node"
-

70 Chapter 2. Features

http://ztpserver.readthedocs.org/en/master/config.html#actions

ZTPServer Documentation, Release 1.3.2

action: add_config
attributes:

url: files/templates/ma1.template
variables:

ipaddress: $ip
name: "configure ma1"

-
action: add_config
attributes:

url: files/templates/xmpp.template
variables: $variables

name: "configure ma1"

attributes:
dst: /mnt/flash
mode: 777
ip: 192.168.0.50
variables:
domain: im.example.com
user: myXmmpUser
passwd: secret
room: myAwesomeRoom

Explanation

This example shows how to use global variables within the definition. It’s important to see the difference between
using variables to define attributes of the action versus variables that get used within the template in an add_config
action. See how the ipaddress variable is nested within a variables key? Also, you can create a list in the
attributes section and pass the entire list into the action as shown in the XMPP config action.

Note: For more Action recipes see the Actions section.

Add Custom Log Statements as Action Executes

Objective

I want to send specific messages to my syslog and/or XMPP servers while an action is executing. Especially, if
something goes wrong, I’d like to add a helpful message so the engineer knows who to contact.

Solution

The node being provisioned will send predefined logs to the endpoints defined in
[data_root]/bootstrap/bootstrap.conf, but you can send additional client-side logs by adding a
few attributes to your definition.

Let’s add some specific status messages to the definition below.

Note: This could be a static node definition in [data_root]/nodes/<SYSTEM_ID>/definition or a global
definition in [data_root]/definitions/definition_name.

2.6. ZTPServer Cookbook 71

ZTPServer Documentation, Release 1.3.2

actions:

-
action: copy_file
always_execute: true
attributes:

dst_url: $dst
mode: $mode
overwrite: if-missing
src_url: files/automate/bgpautoinf.py

name: "Copy automate BGP script to node"
onstart: "Starting the action to copy the BGP script"
onsuccess: "SUCCESS: The BGP script has been copied"
onfailure: "ERROR: Failed to copy script - contact admin@example.com"

attributes:
dst: /mnt/flash
mode: 777

Explanation

Here we make use of three specific keywords: onstart, onsuccess and onfailure. By adding these keys to
your definition, the node will generate this message while it is being provisioned. As mentioned above, this message
will be sent to all of the logging destinations defined in [data_root]/bootstrap/bootstrap.conf.

Note: For help defining an XMPP or syslog endpoint, see Client-Side Logging

2.6.11 Actions

• Add a Configuration Block to a Node
• Add Configuration to a Node Using Variables
• Replace Entire Startup-Config During Provisioning
• Copy a File to a Node During Provisioning
• Install a Specific EOS Image
• Install an Extension

Add a Configuration Block to a Node

Objective

In order to keep your provisioning data modular, you may want to break apart configuration blocks into small code
blocks. You can use the add_config action to place a block on code on the node.

Solution

Example 1: Add a static block of configuration to your node

First, create a template file with the desired configuration.

72 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Make sure you have a directory for templates
admin@ztpserver:~# mkdir -p files/templates

Create a static config block
admin@ztpserver:~# vi files/templates/east-dns.template

!
ip name-server vrf default east.ns1.example.com
!

Then add the add_config action to your definition:

actions:

-
action: add_config
attributes:

url: files/templates/east-dns.template
name: "Add East DNS Server"

Explanation

Here we defined a simple action that adds configuration to the node during provisioning. The url in this case is relative
to [data_root]/url. It’s important to realize that the ZTPServer does not compile these configuration blocks into
a startup-config and then send a single file to the node. Rather, the node executes each action independently, building
the configuration in a module fashion. If you are interested in performing variable substitution in your templates to
make them more flexible, see the next recipe.

Note: Please see the add_config documentation for more details.

Add Configuration to a Node Using Variables

Objective

I want to keep my templates flexible by using variables. In some cases, I’d like to assign a variable from a resource
pool.

Solution

First, create a template file with the desired configuration. In this recipe let’s configure interface Management1.

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Make sure you have a directory for templates
admin@ztpserver:~# mkdir -p files/templates

Create a static config block
admin@ztpserver:~# vi files/templates/ma1.template

2.6. ZTPServer Cookbook 73

http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.add_config

ZTPServer Documentation, Release 1.3.2

Paste this config into the template:

!
interface Management1

ip address $ipaddress
no shutdown

!

Then add the add_config action to your definition:

actions:

-
action: add_config
attributes:

url: files/templates/ma1.template
variables:

ipaddress: allocate("mgmt_subnet")
name: "Configure Ma1"

Then create a resource pool called mgmt_subnet:

Create a resource pool
admin@ztpserver:~# vi resources/mgmt_subnet

Paste the following into mgmt_subnet:

192.0.2.10/24: null
192.0.2.11/24: null
192.0.2.12/24: null
192.0.2.13/24: null

Explanation

This recipe ties a few different concepts together. From a high-level, the definition contains an action, add_config,
which references a configuration block, ma1.template. Further, we use a variable, $ipaddress in the template
file so that the template can be used for all nodes being provisioned. The final piece is the use of the allocate()
plugin, which dynamically assigns a key from the associated file-based resource pool.

In practice, when a node requests its definition the ZTPServer will execute the allocate("mgmt_subnet")
plugin and assign a key from the pool. The ZTPServer will then write the SYSTEM_ID as the value, overwriting
null.

If you wanted to use the assigned value elsewhere in the definition, simply call allocate(mgmt_subnet) and the
plugin will not assign a new value, rather it will return the key already assigned. Note that this is an implementation-
detail specific to this particular plugin - other plugins might vary (please read the associated documentation for each).

The result would look like:

192.0.2.10/24: <SYSTEM_ID>
192.0.2.11/24: null
192.0.2.12/24: null
192.0.2.13/24: null

Note: Please see the add_config documentation for more details.

74 Chapter 2. Features

http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.add_config

ZTPServer Documentation, Release 1.3.2

Replace Entire Startup-Config During Provisioning

Objective

I have a complete startup-config that I want to apply during provisioning. I want to completely replace what’s already
on the node.

Solution

First, create the startup-config with the desired configuration.

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Make sure you have a directory for templates
admin@ztpserver:~# mkdir -p files/configs

Create a startup-config
admin@ztpserver:~# vi files/configs/tor-startup-config

!
hostname test-node-1
ip name-server vrf default <DNS-SERVER-IP>
!
ntp server <NTP-SERVER-IP>
!
username admin privilege 15 role network-admin secret admin
!
interface Management1
ip address <MGMT-IP-ADDRESS>/<SUBNET>

!
ip access-list open
10 permit ip any any

!
ip route 0.0.0.0/0 <DEFAULT-GW>
!
ip routing
!
management api http-commands
no shutdown

!
banner login
Welcome to $(hostname)!
This switch has been provisioned using the ZTPServer from Arista Networks
Docs: http://ztpserver.readthedocs.org/
Source Code: https://github.com/arista-eosplus/ztpserver
EOF
!
end

Then add the replace_config action to your definition:

actions:

-
action: replace_config
attributes:

2.6. ZTPServer Cookbook 75

ZTPServer Documentation, Release 1.3.2

url: files/configs/tor-startup-config
name: "Replace entire startup-config"

Explanation

This action simply replaces the startup-config which lives in /mnt/flash/startup-config.

Note: Please see the replace_config documentation for more details.

Copy a File to a Node During Provisioning

Objective

I want to copy a file to the node during the provisioning process and then set its permissions.

Solution

In this example we’ll copy a python script to the node and set its permissions.

actions:

-
action: copy_file
always_execute: true
attributes:

dst_url: /mnt/flash/
mode: 777
overwrite: if-missing
src_url: files/automate/bgpautoinf.py

name: "automate BGP peer interface config"

Explanation

Here we add the copy_file action to our definition. The attributes listed in the action will be passed to the node so
that it is able to retrieve the script from [SERVER_URL]/files/automate/bgpautoinf.py. Since we are
using overwrite: if-missing, the action will only copy the file to the node if it does not already exist.

You could define the url as any destination the node can reach during provisioning - the file does not need to exist on
the ZTPServer.

Note: Please see the copy_file documentation for more details.

Install a Specific EOS Image

Objective

I want a specific (v)EOS version to be automatically installed when I provision my node.

Note: This assumes that you’ve already downloaded the desired (v)EOS image from Arista.

76 Chapter 2. Features

http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.replace_config
http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.copy_file
https://www.arista.com/en/support/software-download

ZTPServer Documentation, Release 1.3.2

Solution

Let’s create a place on the ZTPServer to host some SWIs:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create an images directory
admin@ztpserver:~# mkdir -p files/images

SCP your SWI into the images directory, name it whatever you like
admin@ztpserver:~# scp admin@otherhost:/tmp/vEOS.swi files/images/vEOS_4.14.5F.swi

Now let’s create a definition that performs the install_image action:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create a definition file
admin@ztpserver:~# vi definitions/tor-definition

Add the following lines to your definition, changing values where needed:

name: static node definition
actions:

-
action: install_image
always_execute: true
attributes:

url: files/images/vEOS_4.14.5F.swi
version: 4.14.5F

name: "Install 4.14.5F"

Note: The definition uses YAML syntax

Explanation

In this case we are hosting the SWI on the ZTPServer, so we just define the url in relation to the data_root. We
could change the url to point to another server altogether - the choice is yours. The benefit of hosting the file on the
ZTPServer is that we perform an extra checksum step to validate the integrity of the file.

In practice, the node requests its definition during the provisioning process. It sees that it’s supposed to perform the
install_image action, so it requests the install_image python script. It then performs an HTTP GET for the
url. Once it has these locally, it executes the install_image script.

Install an Extension

Objective

I want to install an extension on my node automatically.

2.6. ZTPServer Cookbook 77

http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.install_image

ZTPServer Documentation, Release 1.3.2

Solution

Let’s create a place on the ZTPServer to host the RPMs:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create an images directory
admin@ztpserver:~# mkdir -p files/rpms

SCP your SWI into the images directory, name it whatever you like
admin@ztpserver:~# scp admin@otherhost:/tmp/myRPM.rpm files/rpms/myRPM.rpm

Now let’s create a definition that performs the install_extension action:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create a definition file
admin@ztpserver:~# vi definitions/tor-definition

Add the following lines to your definition, changing values where needed:

name: static node definition
actions:

-
action: install_extension
always_execute: true
attributes:

url: files/rpms/myRPM.rpm
name: "Install myRPM extension"

Note: The definition uses YAML syntax

Explanation

The install_extension will copy the RPM defined in the url parameter and copy it to the default extension
directory, /mnt/flash/.extensions

Note: Please see the install_extension documentation for more details.

2.6.12 Resource Pools

• Add a New Resource Pool
• Clearing a Resource Pool

78 Chapter 2. Features

http://ztpserver.readthedocs.org/en/master/actions.html#module-actions.install_extension

ZTPServer Documentation, Release 1.3.2

Add a New Resource Pool

Objective

I’d like to add a new resource pool of IP addresses so that I can assign a new IP to each node that gets provisioned.

Note: Resource Pools are simple key: value YAML files.

Solution

Create the resource pool

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Create a resource pool file
admin@ztpserver:~# vi resources/mgmt_ip

192.168.0.2/24: null
192.168.0.3/24: null
192.168.0.4/24: null
192.168.0.5/24: null
192.168.0.6/24: null
192.168.0.7/24: null
192.168.0.8/24: null
192.168.0.9/24: null
192.168.0.10/24: null

Explanation

Resource Pool files are just key: value files. The default value for each key should be null. This makes the key
available for assignment. If you would like to pre-assign a specific node with a particular key, then just put the node’s
node_id in place of null. Resource Pools are analyzed when the allocate(pool_name) function is run from a
definition. Note that you can also use the allocate() function to perform a lookup when a node has already been
assigned a key.

Clearing a Resource Pool

Objective

I’d like to reset the values of a resource pool so that all values return to null.

Solution

You can use the ztps command line to perform this action.

admin@ztpserver:~# ztps --clear-resources

Note: This will clear ALL resource pools

2.6. ZTPServer Cookbook 79

ZTPServer Documentation, Release 1.3.2

Explanation

Clearing all resource pools can be done via the command line on the ZTPServer. The command will analyze
data_root/resources and any file that exists in that directory that resembles a ZTPServer resource pool will be
cleared.

2.6.13 Advanced

• Configuration Management and ZTR

Configuration Management and ZTR

Objective

I want to automatically push the startup-config from each node to the corresponding /nodes/ folder whenever changes
are made on the node.

Solution

The ZTPServer accepts HTTP PUT requests at nodes/<node_id>/startup-config. Therefore, we can con-
figure and event-handler on the node during provisioning which will perform this PUT anytime the startup-config is
saved.

1. Create event-handler template

Choose the option that best fits your deployment. The variations are Serial Number or System Mac Address, and
Default VRF or Non-Default VRF.

Copy and paste the option text into a new template in:

Go to your data_root - by default it's /usr/share/ztpserver
admin@ztpserver:~# cd /usr/share/ztpserver

Make sure you have a directory for templates
admin@ztpserver:~# mkdir -p files/templates

Create a static config block
admin@ztpserver:~# vi files/templates/config-push.template

Note: Notice the $ztpserver, $port and $vrf_name variables. You can hardcode these in the template or
abstract these to the definition or attributes file (as shown in the next recipe).

Option 1: Using SystemMac and Default VRF

event-handler configpush
trigger on-startup-config
action bash export SYSMAC=`FastCli -p 15 -c 'show ver | grep MAC | cut -d" " -f 5' | sed 's/[.]*//g'`; curl http://$ztpserver:$port/nodes/$SYSMAC/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Option 2: Using SystemMac and Non-Default VRF

80 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

event-handler configpush
trigger on-startup-config
! For non-default VRF, use:
action bash export SYSMAC=`FastCli -p 15 -c 'show ver | grep MAC | cut -d" " -f 5' | sed 's/[.]*//g'`; sudo ip netns exec ns-$vrf_name curl http://$ztpserver:$port/nodes/$SYSMAC/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Option 3: Using Serial Number and Default VRF

event-handler configpush
trigger on-startup-config
! For serial number, default VRF:
action bash export SERIAL=`FastCli -p 15 -c 'show ver' | grep Serial | tr -s ' ' | cut -d ' ' -f 3 | tr -d '\r'`; curl http://$ztpserver:$port/nodes/$SERIAL/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Option 4: Using Serial Number and Non-Default VRF

event-handler configpush
trigger on-startup-config
! For serial number, non-default VRF:
action bash export SERIAL=`FastCli -p 15 -c 'show ver' | grep Serial | tr -s ' ' | cut -d ' ' -f 3 | tr -d '\r'`; sudo ip netns exec ns-$vrf_name curl http://$ztpserver:$port/nodes/$SERIAL/startup-config -H "content-type: text/plain" --data-binary @/mnt/flash/startup-config -X PUT

Explanation

(add explanation here)

2.6.14 Run ZTPServer as a VM on EOS

Introduction

Bootstrapping network devices, much like bootstrapping servers, requires a server in place to handle that function.
Often, it is cumbersome to have that server ready before the network is up and running. Therefore, it will be very
convenient to have a server up and running, along with the first node in the network fabric, to handle bootstrapping for
the rest of the infrastructure.

Arista EOS provides the capability to run VMs on top of EOS, therefore making the above scenario possible. The
following set of recipes will help you perform the necessary steps to streamline your data center network bootstrapping
process:

• You can have everything prepared and stored on a USB key.

• Plug in the USB key to the first SPINE switch in the data center.

• The rest of the data center fabric will be bootstrapped automatically!

There are 3 different deployment topologies, and your network design should fall into one of them. Each topology
requires slightly different recipes, and they are explained in the following sections.

• L2L3WM : a L2 MLAG or L3 ECMP fabric with an out-of-band management network (switches managed via
the management port)

• L2WOM : a L2 MLAG fabric without an out-of-band management network (switches managed in-band via
SVI)

• L3WOM : a L3 ECMP fabric without an out-of-band management network (switches managed in-band via
loopback)

2.6. ZTPServer Cookbook 81

ZTPServer Documentation, Release 1.3.2

ZTPServer VM on EOS in a L2L3WM

Files Needed

• ztps.vmdk : the VM disk image for the ZTPServer VM

• startup-config: a text file (with no extension)

• ztps.sh : a bash shell script

• ztps.xml : an xml file

• fullrecover : an empty text file (with no extension)

• boot-config : a text file (with no extension); contains a single line: SWI=flash:EOS.swi

• EOS.swi : download an EOS image and rename it to EOS.swi

ztps.vmdk

Objective I want to create a ZTPServer vmdk file to use on EOS.

Solution

The ZTPServer vmdk file can be created using either methods below:

1. Automatically Create a Full-Featured ZTPServer: https://github.com/arista-eosplus/packer-ZTPServer

2. Create your own VM and install ZTPServer as intructed in the “Installation” section

Explanation The turnkey solution detailed on the github will create a full featured ztps.vmdk by executing a single
command. The vmdk created using this method comes with certain parameters pre-defined (i.e. domain-name, root
user credential, IP address, etc). If desired, you can change these parameters by logging into the VM after it’s created.

The second method requires more manual work compare to the first method, but may be more suitable if you already
have a VM build to your needs and simply want to add ZTPServer to it.

startup-config

Objective I need to prepare a startup-config for the first SPINE switch to enable ZTPServer.

Solution Essential parts of the configuration:

• event-handler ztps : used to start the shell script ztps.sh

• virtual-machine ztps : used to start the ZTPServer VM on EOS

interface Management1
ip address 192.168.1.10/24

event-handler ztps
trigger on-boot
action bash /mnt/flash/ztps.sh &
delay 300

virtual-machine ztps

82 Chapter 2. Features

https://github.com/arista-eosplus/packer-ZTPServer

ZTPServer Documentation, Release 1.3.2

config-file flash:/ztps.xml
enable

Explanation The event-handler ztps is triggered on-boot to kickstart the shell script ztps.sh. There is a
delay of 300 seconds before the script will be executed, to make sure all the necessary systems are in place before we
run the script. For details of the script please see the ztps.sh section.

External systems will connect to the VM via the management network. The host switch will connect to the VM via
the Linux bridge (See ztps.sh). Therefore in this scenario we will need to have 2 interfaces on the ZTPServer VM.

For details of the shell script ztps.sh please refer to the corresponding sectio below.

ztps.sh

Objective I want to create a shell script to set up all the necessary environment for ZTPServer when the switch boots
up.

Solution
#!/bin/bash
This script is used with the event-handler so that on-boot, we will create linux bridge,
#enable ip.forwarding, restart the ZTPS VM, and start DHCPD
logger -t "ZTPS" -p local0.info "Starting the process for ZTPS VM deployment"

Create Linux Bridge
sudo brctl addbr br0
sudo ifconfig br0 up
sudo ifconfig br0 172.16.130.254/24

logger -t "ZTPS" -p local0.info "Linux Bridge created"

#Now lets restart the ZTPS VM
sudo echo -e "enable\nconfigure terminal\nvirtual-machine ztps restart\n" | FastCli -M -e -p 15

logger -t "ZTPS" -p local0.info "ZTPS VM restarted"

Explanation In order to enable connectivity to the VM locally (from the host switch), a Linux bridge interface needs
to be created and assigned an IP in the same subnet as one of the interfaces on the VM.

The ZTPServer VM needs to be restarted after the switch boots up.

Note: The ZTPServer VM needs to have its default gateway pointed to the default gateway of the management
network.

ztps.xml

Objective I want to prepare a KVM custom xml file to enable a VM on EOS.

Solution Key parts of the xml file to pay attention to:

• <domain type=’kvm’ id=’1’> : id needs to be unique (if more than 1 VM)

• <driver name=’qemu’ type=’vmdk’/> : make sure the type is vmdk

2.6. ZTPServer Cookbook 83

ZTPServer Documentation, Release 1.3.2

• <source file=’/mnt/usb1/ztps.vmdk’/>: make sure the path is correct

• Interface definition section :

– MAC address in the xml need to match the MAC address of the interfaces on the ZTPServer VM.

– The first interface type is direct and is mapped to ma1. This is the interface that will be used for other
switches to reach the VM.

– The second interface type is bridge and is using Linux bridge. This interface is solely used for local host
switch to VM connectivity.

<domain type='kvm' id='1'>
<name>ztps</name>
<memory>1048576</memory>
<currentMemory>1048576</currentMemory>
<vcpu>1</vcpu>
<os>
<type arch='x86_64' machine='pc-i440fx-1.4'>hvm</type>
<boot dev='hd'/>

</os>
<features>
<acpi/>
<apic/>
<pae/>

</features>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>restart</on_crash>
<devices>
<emulator>/usr/bin/qemu-system-x86_64</emulator>
<disk type='file' device='disk'>

<driver name='qemu' type='vmdk'/>
<source file='/mnt/usb1/ztps.vmdk'/>
<target dev='hda' bus='ide'/>
<alias name='ide0-0-0'/>
<address type='drive' controller='0' bus='0' unit='0'/>

</disk>
<controller type='ide' index='0'>

<alias name='ide0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>

</controller>
<interface type='direct'>

<mac address='08:00:27:bc:d7:38'/>
<source dev='ma1' mode='bridge'/>
<target dev='macvtap0'/>
<model type='e1000'/>
<alias name='net0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>

</interface>
<interface type='bridge'>

<mac address='08:00:27:85:0c:f8'/>
<source bridge='br0'/>
<target dev='macvtap1'/>
<model type='e1000'/>
<alias name='net1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>

</interface>
<serial type='pty'>

84 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

<source path='/dev/pts/5'/>
<target port='0'/>
<alias name='serial0'/>

</serial>
<console type='pty' tty='/dev/pts/5'>

<source path='/dev/pts/5'/>
<target type='serial' port='0'/>
<alias name='serial0'/>

</console>
<input type='tablet' bus='usb'>

<alias name='input0'/>
</input>
<input type='mouse' bus='ps2'/>
<graphics type='vnc' port='5900' autoport='no' listen='0.0.0.0'/>
<video>

<model type='vga' vram='8192' heads='1'/>
<alias name='video0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>

</video>
<memballoon model='virtio'>

<alias name='balloon0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</memballoon>
</devices>

</domain>

Explanation The interface definition section defines how the interface(s) of the VM should be initialized. Since the
vmdk already has interfaces defined/initialized, we have to use the same MAC address in the KVM definition file.

In the first interface definition we use interface type=’direct’. In this configuration we map the first in-
terface of the VM to the ma1 interface directly, enabling connectivity to the VM from external of the host switch.
However, interface type=’direct’ does not allow for host switch to VM connectivity, therefore we need to
define a second interface with interface type=’bridge’ and map that to the Linux bridge for this puspose.

The reason we could not just bridge ma1 with the Linux bridge (and therefore just use one interface to enable both local
and external connectivity) is because when we enslave an interface to br0, that interface cannot have an IP address on
it, otherwise the connectivity would break.

ZTPServer VM on EOS in a L2WOM

Files Needed

• ztps.vmdk : the VM disk image for the ZTPServer VM

• startup-config: a text file (with no extension)

• ztps.sh : a bash shell script

• ztps.xml : an xml file

• fullrecover : an empty text file (with no extension)

• boot-config : a text file (with no extension); contains a single line: SWI=flash:EOS.swi

• EOS.swi : download an EOS image and rename it to EOS.swi

2.6. ZTPServer Cookbook 85

ZTPServer Documentation, Release 1.3.2

ztps.vmdk

Objective I want to create a ZTPServer vmdk file to use on EOS.

Solution

The ZTPServer vmdk file can be created using either methods below:

1. Automatically Create a Full-Featured ZTPServer: https://github.com/arista-eosplus/packer-ZTPServer

2. Create your own VM and install ZTPServer as intructed in the “Installation” section

Explanation The turnkey solution detailed on the github will create a full featured ztps.vmdk by executing a single
command. The vmdk created using this method comes with certain parameters pre-defined (i.e. domain-name, root
user credential, IP address, etc). If desired, you can change these parameters by logging into the VM after it’s created.

The second method requires more manual work compare to the first method, but may be more suitable if you already
have a VM build to your needs and simply want to add ZTPServer to it.

startup-config

Objective I need to prepare a startup-config for the first SPINE switch to enable ZTPServer.

Solution Essential parts of the configuration:

• event-handler ztps : used to start the shell script ztps.sh

• virtual-machine ztps : used to start the ZTPServer VM on EOS

interface Vlan1
ip address 192.168.1.10/24

event-handler ztps
trigger on-boot
action bash /mnt/flash/ztps.sh &
delay 300

virtual-machine ztps
config-file flash:/ztps.xml
enable

Explanation The event-handler ztps is triggered on-boot to kickstart the shell script ztps.sh. There is a
delay of 300 seconds before the script will be executed, to make sure all the necessary systems are in place before we
run the script. For details of the script please see the ztps.sh section.

External systems will connect to the VM via Vlan1 (other VLANs can be used as well). The host switch will connect
to the VM via the Linux bridge (See ztps.sh). Therefore in this scenario we will need to have 2 interfaces on the
ZTPServer VM.

For details of the shell script ztps.sh please refer to the corresponding section below.

ztps.sh

Objective I want to create a shell script to set up all the necessary environment for ZTPServer when the switch boots
up.

86 Chapter 2. Features

https://github.com/arista-eosplus/packer-ZTPServer

ZTPServer Documentation, Release 1.3.2

Solution
#!/bin/bash
This script is used with the event-handler so that on-boot, we will create linux bridge,
#enable ip.forwarding, restart the ZTPS VM, and start DHCPD
logger -t "ZTPS" -p local0.info "Starting the process for ZTPS VM deployment"

Create Linux Bridge
sudo brctl addbr br0
sudo ifconfig br0 up
sudo ifconfig br0 172.16.130.254/24

logger -t "ZTPS" -p local0.info "Linux Bridge created"

#Now lets restart the ZTPS VM
sudo echo -e "enable\nconfigure terminal\nvirtual-machine ztps restart\n" | FastCli -M -e -p 15

logger -t "ZTPS" -p local0.info "ZTPS VM restarted"

Explanation In order to enable connectivity to the VM locally (from the host switch), a Linux bridge interface needs
to be created and assigned an IP in the same subnet as one of the interfaces on the VM.

The ZTPServer VM needs to be restarted after the switch boots up.

Note: The ZTPServer VM needs to have its default gateway pointed to the default gateway of Vlan1 (or your choice
of VLAN).

ztps.xml

Objective I want to prepare a KVM custom xml file to enable a VM on EOS.

Solution Key parts of the xml file to pay attention to:

• <domain type=’kvm’ id=’1’> : id needs to be unique (if more than 1 VM)

• <driver name=’qemu’ type=’vmdk’/> : make sure the type is vmdk

• <source file=’/mnt/usb1/ztps.vmdk’/>: make sure the path is correct

• Interface definition section :

– MAC address in the xml need to match the MAC address of the interfaces on the ZTPServer VM.

– The first interface type is direct and is mapped to vlan1. This is the interface that will be used for other
switches to reach the VM.

– The second interface type is bridge and is using Linux bridge. This interface is solely used for local host
switch to VM connectivity.

<domain type='kvm' id='1'>
<name>ztps</name>
<memory>1048576</memory>
<currentMemory>1048576</currentMemory>
<vcpu>1</vcpu>
<os>
<type arch='x86_64' machine='pc-i440fx-1.4'>hvm</type>
<boot dev='hd'/>

</os>

2.6. ZTPServer Cookbook 87

ZTPServer Documentation, Release 1.3.2

<features>
<acpi/>
<apic/>
<pae/>

</features>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>restart</on_crash>
<devices>
<emulator>/usr/bin/qemu-system-x86_64</emulator>
<disk type='file' device='disk'>

<driver name='qemu' type='vmdk'/>
<source file='/mnt/usb1/ztps.vmdk'/>
<target dev='hda' bus='ide'/>
<alias name='ide0-0-0'/>
<address type='drive' controller='0' bus='0' unit='0'/>

</disk>
<controller type='ide' index='0'>

<alias name='ide0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>

</controller>
<interface type='direct'>

<mac address='08:00:27:bc:d7:38'/>
<source dev='vlan1' mode='bridge'/>
<target dev='macvtap0'/>
<model type='e1000'/>
<alias name='net0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>

</interface>
<interface type='bridge'>

<mac address='08:00:27:85:0c:f8'/>
<source bridge='br0'/>
<target dev='macvtap1'/>
<model type='e1000'/>
<alias name='net1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>

</interface>
<serial type='pty'>

<source path='/dev/pts/5'/>
<target port='0'/>
<alias name='serial0'/>

</serial>
<console type='pty' tty='/dev/pts/5'>

<source path='/dev/pts/5'/>
<target type='serial' port='0'/>
<alias name='serial0'/>

</console>
<input type='tablet' bus='usb'>

<alias name='input0'/>
</input>
<input type='mouse' bus='ps2'/>
<graphics type='vnc' port='5900' autoport='no' listen='0.0.0.0'/>
<video>

<model type='vga' vram='8192' heads='1'/>
<alias name='video0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>

</video>

88 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

<memballoon model='virtio'>
<alias name='balloon0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</memballoon>
</devices>

</domain>

Explanation The interface definition section defines how the interface(s) of the VM should be initialized. Since the
vmdk already has interfaces defined/initialized, we have to use the same MAC address in the KVM definition file.

In the first interface definition we use interface type=’direct’. In this configuration we map the first in-
terface of the VM to the vlan1 interface directly, enabling connectivity to the VM from external of the host switch.
However, interface type=’direct’ does not allow for host switch to VM connectivity, therefore we need to
define a second interface with interface type=’bridge’ and map that to the Linux bridge for this puspose.

The reason we could not just bridge Vlan1 with the Linux bridge (and therefore just use one interface to enable both
local and external connectivity) is because when we enslave an interface to br0, that interface cannot have an IP address
on it, otherwise the connectivity would break.

ZTPServer VM on EOS in a L3WOM

Files Needed

• ztps.vmdk : the VM disk image for the ZTPServer VM

• startup-config: a text file (with no extension)

• ztps.sh : a bash shell script

• ztps.xml : an xml file

• dhcpd.conf : a text file for Linux dhcpd configuration

• dhcpd.rpm : a DHCP server RPM to be installed on EOS

• ztps_daemon : a python script

• fullrecover : an empty text file (with no extension)

• boot-config : a text file (with no extension); contains a single line: SWI=flash:EOS.swi

• boot-extention: a text file (with no extention); contains a single like: dhcpd.rpm

• EOS.swi : download an EOS image and rename it to EOS.swi

ztps.vmdk

Objective I want to create a ZTPServer vmdk file to use on EOS.

Solution

The ZTPServer vmdk file can be created using either methods below:

1. Automatically Create a Full-Featured ZTPServer: https://github.com/arista-eosplus/packer-ZTPServer

2. Create your own VM and install ZTPServer as intructed in the “Installation” section

2.6. ZTPServer Cookbook 89

https://github.com/arista-eosplus/packer-ZTPServer

ZTPServer Documentation, Release 1.3.2

Explanation The turnkey solution detailed on the github will create a full featured ztps.vmdk by executing a single
command. The vmdk created using this method comes with certain parameters pre-defined (i.e. domain-name, root
user credential, IP address, etc). If desired, you can change these parameters by logging into the VM after it’s created.

The second method requires more manual work compare to the first method, but may be more suitable if you already
have a VM build to your needs and simply want to add ZTPServer to it.

startup-config

Objective I need to prepare a startup-config for the first SPINE switch to enable ZTPServer.

Solution Essential parts of the configuration:

• interface Loopback2 : need a loopback interface on the same subnet as the VM

• daemon ztps : used to run the ztps.daemon python script in the background

• event-handler ztps : used to start the shell script ztps.sh

• virtual-machine ztps : used to start the ZTPServer VM on EOS

• management api http-commands: need to enable eAPI for daemon ztps to function

interface Loopback2
ip address 172.16.130.253/24

daemon ztps
command /mnt/flash/ztps_daemon &

event-handler ztps
trigger on-boot
action bash /mnt/flash/ztps.sh &
delay 300

virtual-machine ztps
config-file flash:/ztps.xml
enable

management api http-commands
protocol http localhost
no shutdown

Explanation The event-handler ztps is triggered on-boot to kickstart the shell script ztps.sh. There is a
delay of 300 seconds before the script will be executed, to make sure all the necessary systems are in place before we
run the script. For details of the script please see the ztps.sh section.

The management api http-commands section enables Arista eAPI on the host swithc; eAPI is leveraged by
the ztps_daemon. eAPI can be accessed remotely via http or https, or it can be accessed locally via http, or by
binding to a UNIX socket (only available on 4.14.5F onward). Since the daemon is a script that runs locally, we can
either enalbe eAPI on the localhost via http (if you are running 4.14.5F or later), or we can just enable eAPI over https
(this will require authentication).

The daemon ztps section runs a python script in the back ground as a daemon to restart DHCPD whenever an
interface comes up.

For details of the shell script ztps.sh and the python script ztps_daemon please refer to the corresponding sectio
below.

90 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Note: The loopback interface is only needed if you plan to bootstrap a L3 ECMP fabric without a management
network. In this scenario, the loopback address needs to be advertised in the ECMP routing protocol to enable con-
nectivity for the downstream deviecs in the fabric.

ztps.sh

Objective I want to create a shell script to set up all the necessary environment for ZTPServer when the switch boots
up.

Solution
#!/bin/bash
This script is used with the event-handler so that on-boot, we will create linux bridge,
#enable ip.forwarding, restart the ZTPS VM, and start DHCPD
logger -t "ZTPS" -p local0.info "Starting the process for ZTPS VM deployment"

Create Linux Bridge
sudo brctl addbr br0
sudo ifconfig br0 up
sudo ifconfig br0 172.16.130.254/24

logger -t "ZTPS" -p local0.info "Linux Bridge created"

Enable ip.forwarding
sudo sysctl net.ipv4.conf.all.forwarding=1
sudo sysctl net.ipv4.ip_forward=1

logger -t "ZTPS" -p local0.info "ip.forwarding enabled"

Move the DHCP server RPM to the appropriate folder on EOS for installation
Move the dhcpd.conf file to the appropriate folder
sudo cp /mnt/flash/dhcp-4.2.0-23.P2.fc14.i686.rpm /mnt/flash/.extensions/dhcpd.rpm
sudo cp /mnt/flash/dhcpd.conf /etc/dhcp/
sudo /usr/sbin/dhcpd
sleep 5

#make sure dhcpd is running before we continue
ps aux | grep "dhcpd" | grep -v grep
if [$? -eq 0]
then
{
logger -t "ZTPS" -p local0.info "DHCPD is running. Restart ZTPS VM."

#Now lets restart the ZTPS VM
sudo echo -e "enable\nconfigure terminal\nvirtual-machine ztps restart\n" | FastCli -M -e -p 15

logger -t "ZTPS" -p local0.info "ZTPS VM restarted"

exit 0
}
else

logger -t "ZTPS" -p local0.info "Looks like DHCPD didn't start. Lets sleep for a few seconds and try again"
sleep 10

fi

2.6. ZTPServer Cookbook 91

ZTPServer Documentation, Release 1.3.2

Explanation In order to enable connectivity to the VM from both remotely and locally (from the host switch), a
Linux bridge interface needs to be created and assigned an IP in the same subnet as the VM; Linux ip.forwarding
also needs to be enabled in the kernel for the packets to be routed to the VM.

EOS does not come with dhcpd preinstalled, there a DHCP-Server RPM needs to be downloaded, installed and
started. Dowdload the RPM from here and rename it to dhcpd.rpm. The RPM needs to be moved to the
/mnt/flash/.extension location, and a boot-extension file, with the RPM specified, needs to be present
in /mnt/flash in order for the RPM to be installed persistently after a reboot.

The ZTPServer VM needs to be restarted after the switch boots up.

Note: The ZTPServer VM needs to have its default gateway pointed to the br0 interface IP address.

ztps.xml

Objective I want to prepare a KVM custom xml file to enable a VM on EOS.

Solution Key parts of the xml file to pay attention to:

• <domain type=’kvm’ id=’1’> : in case multiple VMs are running on the system, make sure the config-
ured ID is unique

• <driver name=’qemu’ type=’vmdk’/> : make sure the type is vmdk

• <source file=’/mnt/usb1/ztps.vmdk’/>: make sure the path is correct

• <mac address=’08:00:27:85:0c:f8’/> : make sure this MAC matches the MAC address of the
interface on the ZTPServer VM that you intend to use for connectivity

• <target dev=’vnet0’/> : make sure the target device type is vnet0

<domain type='kvm' id='1'>
<name>ztps</name>
<memory>1048576</memory>
<currentMemory>1048576</currentMemory>
<vcpu>1</vcpu>
<os>
<type arch='x86_64' machine='pc-i440fx-1.4'>hvm</type>
<boot dev='hd'/>

</os>
<features>
<acpi/>
<apic/>
<pae/>

</features>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>restart</on_crash>
<devices>
<emulator>/usr/bin/qemu-system-x86_64</emulator>
<disk type='file' device='disk'>

<driver name='qemu' type='vmdk'/>
<source file='/mnt/usb1/ztps.vmdk'/>
<target dev='hda' bus='ide'/>
<alias name='ide0-0-0'/>
<address type='drive' controller='0' bus='0' unit='0'/>

</disk>

92 Chapter 2. Features

https://docs.google.com/a/arista.com/document/d/1fmhvousmZYr8Sidiv9rBf_PZDT-65QX0um215s_9K0c/edit

ZTPServer Documentation, Release 1.3.2

<controller type='ide' index='0'>
<alias name='ide0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>

</controller>
<interface type='bridge'>

<mac address='08:00:27:85:0c:f8'/>
<source bridge='br0'/>
<target dev='vnet0'/>
<model type='e1000'/>
<alias name='net0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>

</interface>
<serial type='pty'>

<source path='/dev/pts/5'/>
<target port='0'/>
<alias name='serial0'/>

</serial>
<console type='pty' tty='/dev/pts/5'>

<source path='/dev/pts/5'/>
<target type='serial' port='0'/>
<alias name='serial0'/>

</console>
<input type='tablet' bus='usb'>

<alias name='input0'/>
</input>
<input type='mouse' bus='ps2'/>
<graphics type='vnc' port='5900' autoport='no' listen='0.0.0.0'/>
<video>

<model type='vga' vram='8192' heads='1'/>
<alias name='video0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>

</video>
<memballoon model='virtio'>

<alias name='balloon0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</memballoon>
</devices>

</domain>

Explanation The interface definition section defines how the interface(s) of the VM should be initialized. Since the
vmdk already has interfaces defined/initialized, we have to use the same MAC address in the KVM definition file.

The target device type should be vnet0 to enable connectivity to the VM from both remotely and locally from the
host switch. Another choice here is the macvtap device type but this type prohibits connectivity for any locally routed
packets (i.e. when the routing action to the VM takes place on the host switch).

dhcpd.conf

Objective I want to prepare a dhcpd.conf file for running DHCPD on EOS.

Solution
class "ARISTA" {

match if substring(option vendor-class-identifier, 0, 6) = "Arista";
option bootfile-name "http://172.16.130.10:8080/bootstrap";

}

2.6. ZTPServer Cookbook 93

ZTPServer Documentation, Release 1.3.2

Example
subnet 10.1.1.0 netmask 255.255.255.252 {

option routers 10.1.1.1;
default-lease-time 86400;
max-lease-time 86400;
pool {

range 10.1.1.2 10.1.1.2;
allow members of "ARISTA";

}
}

Explanation The class "ARISTA" section defines a match criteria so that any subnet defition that uses this
class would only allocate IPs if the requestor is an Arista device. This class also defines a bootstrap file that will be
downloaded to the requestor.

Note: The IP address and TCP port number defined for the bootfile needs to match the ZTPServer VM configuration.

The subnet section provides an example to show you how it can be defined. If you are bootstrapping a L3 ECMP
network without a management network, this section needs to be repeated for every p-to-p links connecting to every
leaf switches.

Note: The ZTPServer VM also runs dhcpd, but in the scenario of L3 ECMP without a management network, we are
unable to leverage that. This is because DHCP relay from the host switch to the VM is currently not supported in EOS.

ztps_daemon

Objective I want to create a python script that restarts DHCPD whenever an interface comes up.

Solution
#!/usr/bin/env python

import jsonrpclib
import os
import time

#PROTO = "https"
#USERNAME = "admin"
#PASSWORD = "admin"
#HOSTNAME = "172.16.130.20"

class EapiClient(object):
'''
Instantiate a Eapi connection client object
for interacting with EAPI

'''

def __init__(self):
For EOS 4.14.5F and later, you can enable locally run scripts without needing to authenticate
If you are running earlier versions, just uncomment next line and also the CONSTANTS above
#switch_url = '{}://{}:{}@{}/command-api'.format(PROTO, USERNAME, PASSWORD, HOSTNAME)
switch_url = 'http://localhost:8080/command-api'
self.client = jsonrpclib.Server(switch_url)

94 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

def connected_interfaces(self):
cmd = "show interfaces status connected"
response = self.client.runCmds(1, [cmd])[0]
connected_intfs = response['interfaceStatuses'].keys()
return connected_intfs

def restart_dhcpd(eapi):
'''
Monitor the connected interfaces.
If there are newly connected interface(s), restart dhcpd
'''
connected_intfs = []

while True:
new_connected_intfs = eapi.connected_interfaces()
for intf in new_connected_intfs:

if intf not in connected_intfs:
os.system('sudo service dhcpd restart')

connected_intfs = new_connected_intfs
time.sleep(10)

def main():
eapi = EapiClient()
restart_dhcpd(eapi)

if __name__ == '__main__':
try:
main()

except KeyboardInterrupt:
pass

Explanation DHCPD only binds to interfaces that are UP when the process started. Since we are running DHCPD
directly on the SPINE switch, there is no gaurantee that the interfaces connected to the LEAFs are up when DHCPD
started. Therefore, we need to run a script/daemon in the background to continuously check the connected interface
status, and if new interfaces came up, DHCPD would be restarted to bind to the newly connected interfaces.

Deployment Steps

Objective

I want to use a single USB key to bootstrap my entire data center fabric.

Solution

Follow the steps below:

1. Obtain an USB key that’s at least 4GB and format it with either MS-DOS or FAT file system

2. Copy all the files listed in the “Files Needed” section onto the USB key

3. Plug the USB key into the USB port on the first SPINE switch

4. Sit back and watch your data center network fabric bring itself up!

2.6. ZTPServer Cookbook 95

ZTPServer Documentation, Release 1.3.2

Note: All files and directories present on the USB flash drive will be copied to the switch. It is recommended that the
USB drive contains only the three files listed above.

Explanation

The USB key method leverages the Arista Password Recovery mechanism. When the fullrecover and
boot-config file is present on the USB key, the system will check the timestamp on the boot-config file.If
the timestamp is different, all files on the USB key will be copied to the flash on the switch, and the switch will be
rebooted and come up with the startup-config and the EOS.swi included on the USB key.

2.7 Tips and tricks

• How do I update my local copy of ZTPServer from GitHub?
– Automatically
– Manually

• My server keeps failing to load my resource files. What’s going on?
• How do I validate the format of my config files?
• How do I debug the ZTP Server provisioning process?
• How do I disable / enable ZTP mode on a switch
• How can I test ZTPServer without having to reboot the switch every time?
• What is the recommended test environment for ZTPServer?
• How do I override the default system-mac in vEOS?
• How do I override the default serial number or system-mac in vEOS?

2.7.1 How do I update my local copy of ZTPServer from GitHub?

Automatically

Go to the ZTPServer directory where you previously cloned the GitHub repository and execute:
./utils/refresh_ztps [-b <branch>] [-f <path>]

• <branch> can be any branch name in the Git repo. Typically this will be one of:

– “master” - for the latest release version

– “vX.Y.Z-rc” - for beta testing the next X.Y.Z release-candidate

– “develop” (DEFAULT) - for the latest bleeding-edge development branch

• <path> is the base directory of the ztpserver installation.

– /usr/share/ztpserver (DEFAULT)

Manually

Remove the existing ZTPServer files:

96 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

rm -rf /usr/share/ztpserver/actions/*
rm -rf /usr/share/ztpserver/bootstrap/*
rm -rf /usr/lib/python2.7/site-packages/ztpserver*
rm -rf /bin/ztps*
rm -rf /home/ztpuser/ztpserver/ztpserver.egg-info/
rm -rf /home/ztpuser/ztpserver/build/*

Go to the ZTPServer directory where you previously cloned the GitHub repository, update it, then build and install the
server:

bash-3.2$ git pull
bash-3.2$ python setup.py build
bash-3.2$ python setup.py install

2.7.2 My server keeps failing to load my resource files. What’s going on?

Did you know?

a:b is INVALID YAML
a: b is VALID YAML syntax

Check out YAML syntax checker for more.

2.7.3 How do I validate the format of my config files?

To validate config files use ztps --validate:

[ztpsadmin@ztps ~]$ ztps --validate
Validating neighbordb ('/usr/share/ztpserver/neighbordb')... Ok!

Validating definitions...
Validating /usr/share/ztpserver/definitions/torb-withImageUpgrade... Ok!
Validating /usr/share/ztpserver/definitions/torb... Ok!
Validating /usr/share/ztpserver/definitions/tora-withImageUpgrade... Ok!
Validating /usr/share/ztpserver/definitions/tora... Ok!

Validating resources...
Validating /usr/share/ztpserver/resources/tor_hostnames... Ok!
Validating /usr/share/ztpserver/resources/ip_loopback... Ok!
Validating /usr/share/ztpserver/resources/ip_vlan100... Ok!
Validating /usr/share/ztpserver/resources/mgmt_subnet... Ok!

Validating nodes...
Validating /usr/share/ztpserver/nodes/001122334456/pattern... Ok!
Validating /usr/share/ztpserver/nodes/001122334456/definition... Ok!
Validating /usr/share/ztpserver/nodes/001122334455/pattern... Ok!
Validating /usr/share/ztpserver/nodes/001122334455/definition... Ok!
Validating /usr/share/ztpserver/nodes/001122334457/pattern... Ok!
Validating /usr/share/ztpserver/nodes/001122334457/definition... Ok!

2.7.4 How do I debug the ZTP Server provisioning process?

• If ZTP Server is running via wsgi, Check the Apache log files. Separate log files can be designated for ZTP
Server’s wsgi with the following:

2.7. Tips and tricks 97

http://yamllint.com/

ZTPServer Documentation, Release 1.3.2

<VirtualHost *:8080>
CustomLog logs/ztpserver-access_log common
ErrorLog logs/ztpserver-error_log
...

</VirtualHost>

• Run the standalone ZTP Server binary in debug mode and log the output to a file: ztps --debug 2>&1 |
tee ztps.log

• After changing configuration directives in neighbordb, a definition, etc, you may need to remove the node
directory of the node-under-test before retrying ZTP on the node. This will ensure that ZTP Server matches the
node against neighbordb instead of nodes/<serialnum>/pattern.

• The bootstrap script may be manually run from a switch instead of going through an entire reload/ZTP
cycle. To do this, download the script to the switch, then run it locally:

switch# bash wget http://ztpserver:8080/bootstrap
switch# bash chmod +x bootstrap
switch# bash sudo ./bootstrap

• On the client side, make sure you use XMPP (best) or remove syslog (second best) logging - you can configure
that in bootstrap.conf.

• When requesting support, please include the output from the server (running in debug mode) and the console/log
output from the switch.

2.7.5 How do I disable / enable ZTP mode on a switch

By default, any switch that does not have a startup-config will enter ZTP mode to attempt to retrieve one. This
feature was introduced in EOS 3.7 for fixed devices and EOS 4.10 for modular ones. In ZTP mode, the switch sends
out DHCP requests on all interfaces and will not forward traffic until it reboots with a config.

To cancel ZTP mode, login as admin and type zerotouch cancel. This will trigger an immediate reload of the
switch, after which the switch will be ready to configure manually. At this point, if you ever erase the startup-config
and reload, the switch will edn up ZTP mode again.

To completely disable ZTP mode, login as admin and type zerotouch disable. This will trigger an immediate
reload of the switch after which the switch will will be ready to configure manually. If you wish to re-enable ZTP, go
to configure mode and run zerotouch enable. The next time you erase the startup-config and reload the switch,
the switch will end up ZTP mode again.

Note: vEOS instances come with a minimal startup-config so they do not boot in to ZTP mode by default. In order
to use vEOS to test ZTP, enter erase startup-config and reload.

2.7.6 How can I test ZTPServer without having to reboot the switch every time?

From a bash shell on the switch:

retrieve the bootstrap file from server
wget http://<ZTP_SERVER>:<PORT>/bootstrap
make file executable
sudo chmod 777 bootstrap
execute file
sudo ./bootstrap

98 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

2.7.7 What is the recommended test environment for ZTPServer?

The best way to learn about and test a ZTPServer environment is to build the server and virtual (vEOS) nodes with
Packer. See https://github.com/arista-eosplus/packer-ztpserver for directions.

If you setup your own environment, the following recommendations should assist greatly in visualizing the workflow
and troubleshooting any issues which may arise. The development team strongly encourages these steps as Best Prac-
tices for testing your environment, and, most of these recommendations are also Best Practices for a full deployment.

• During testing, only - run the standalone server in debug mode: ztps --debug in a buffered shell. NOTE: do
NOT use this standalone server in production, however, except in the smallest environments (Approx 10 nodes
or less, consecutively).

• Do not attempt any detailed debugging from a virtual or serial console. Due to the quantity of information
and frequent lack of copy/paste access, this if often painful. Both suggested logging methods, below, can be
configured in the Bootstrap configuration.

– (BEST) Setup XMPP logging. There are many XMPP services available, including ejabberd, and even
more clients, such as Adium. This will give you a single pane view of what is happening on all of your
test switches. Our demo includes ejabberd with the following configuration:

* Server: im.ztps-test.com (or your ZTPServer IP)

* XMPP admin user: ztpsadmin@im.ztps-test.com, passwd eosplus

– (Second) In place of XMPP, splecify a central syslog server in the bootstrap config.

2.7.8 How do I override the default system-mac in vEOS?

Add the desired MAC address to the first line of the file /mnt/flash/system_mac_address, then reboot (Feature added
in 3.13.0F)

[admin@localhost ~]$ echo 1122.3344.5566 > /mnt/flash/system_mac_address

2.7.9 How do I override the default serial number or system-mac in vEOS?

As of vEOS 4.14.0, the serial number and system mac address can be configured with a file in /mnt/flash/veos-config.
After modifying SERIALNUMBER or SYSTEMMACADDR, a reboot is required for the changes to take effect.

SERIALNUMBER=ABC12345678
SYSTEMMACADDR=1122.3344.5566

2.8 Internals

2.8.1 Implementation Details

• Client-side implementation details
– Action attributes
– Bootstrap URLs

2.8. Internals 99

https://github.com/arista-eosplus/packer-ztpserver
https://www.ejabberd.im/
https://adium.im/
mailto:ztpsadmin@im.ztps-test.com

ZTPServer Documentation, Release 1.3.2

Client-side implementation details

Action attributes

The bootstrap script will pass in as argument to the main method of each action a special object called ‘attributes’. The
only API the action needs to be aware for this object is the ‘get’ method, which will return the value of an attribute, as
configured on the server:

• the value can be local to a particular action or global

• if an attribute is defined at both the local and global scopes, the local value takes priority

• if an attribute is not defined at either the local or global level, then the ‘get’ method will return None

e.g. (action code)

def main(attributes):
print attributes.get(‘software_image’)

Besides the values coming from the server, a couple of special entries* (always upper case) are also contained in the
attributes object:

• ‘NODE’: a node object for making eAPI calls to localhost. See the Bootstrap Client documentation.

e.g. (action_code)

def main(attributes):
print attributes.get(‘NODE’).api_enable_cmds([‘show version’])

Bootstrap URLs

1. DHCP response contains the URL pointing to the bootstrap script on the server

2. The location of the server is hardcoded in the bootstrap script, using the SERVER global variable. The boot-
strap script uses this base address in order to generate the URL to use in order to GET the logging details:
BASE_URL/config e.g.

SERVER = ‘http://my-bootstrap-server:80’ # Note that the port and the transport mechanism
is included in the URL

3. The bootstrap script uses the SERVER base address in order to compute the URL to use in order to POST the
node’s information: BASE_URL/config

4. The bootstrap script uses the ‘location’ header in the POST reply as the URL to use in order to request the
definition

5. Actions and resources URLs& are computed by using the base address in the bootstrap script:
BASE_URL/actions/, BASE_URL/files/

2.8.2 Client - Server API

100 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

• URL Endpoints
– GET bootstrap script
– GET bootstrap logging configuration
– POST node details
– GET node definition
– PUT node startup-config
– GET node startup-config
– GET actions/(NAME)
– GET resource files
– GET meta data for a resource or file

URL Endpoints

HTTP Method URI
GET /bootstrap
GET /bootstrap/config
POST /nodes
GET /nodes/{id}
PUT /nodes/{id}/startup-config
GET /nodes/{id}/startup-config
GET /actions/{name}
GET /files/{filepath}
GET /meta/{actions|files|nodes}/{PATH_INFO}

GET bootstrap script

GET /bootstrap
Returns the default bootstrap script

Request

GET /bootstrap HTTP/1.1

Response

Content-Type: text/x-python
<contents of bootstrap client script>

Response Headers

• Content-Type – text/x-python

Status Codes

• 200 OK – OK

Note: For every request, the bootstrap controller on the ZTPServer will attempt to perform the following string
replacement in the bootstrap script): “$SERVER“ —> the value of the “server_url” variable in the server’s global
configuration file. This string replacement will point the bootstrap client back to the server in order to enable the
client to make additional requests for further resources on the server.

• if the server_url variable is missing from the server’s global configuration file, ‘http://ztpserver:8080‘ is
used by default

2.8. Internals 101

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://ztpserver:8080

ZTPServer Documentation, Release 1.3.2

• if the $SERVER string is missing from the bootstrap script, the controller will log a warning message and
continue

GET bootstrap logging configuration

GET /bootstrap/config
Returns the logging configuration from the server.

Request

GET /bootstrap/config HTTP/1.1

Response

Content-Type: application/json
{

“logging”*: [{
“destination”: “file:/<PATH>” | “<HOSTNAME OR IP>:<PORT>”, //localhost enabled

//by default
“level”*: <DEBUG | CRITICAL | ...>,

}]
},

“xmpp”*:{
“server”: <IP or HOSTNAME>,
“port”: <PORT>, // Optional, default 5222
“username”*: <USERNAME>,
“domain”*: <DOMAIN>,
“password”*: <PASSWORD>,
“nickname”: <NICKNAME>, // Optional, default ‘username’
“rooms”*: [<ROOM>, ...]
}

}
}

Note: * Items are mandatory (even if value is empty list/dict)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – OK

POST node details

Send node information to the server in order to check whether it can be provisioned.

POST /nodes
Request

Content-Type: application/json
{

“model”*: <MODEL_NAME>,
“serialnumber”*: <SERIAL_NUMBER>,
“systemmac”*: <SYSTEM_MAC>,
“version”*: <INTERNAL_VERSION>,
“neighbors”*: {

<INTERFACE_NAME(LOCAL)>: [{

102 Chapter 2. Features

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

ZTPServer Documentation, Release 1.3.2

'device': <DEVICE_NAME>,
'remote_interface': <INTERFACE_NAME(REMOTE)>

}]
},

}

Note: * Items are mandatory (even if value is empty list/dict)

Response

Status: 201 Created OR 409 Conflict will both return:

Content-Type: text/html
Location: <url>

Status Codes

• 201 Created – Created

• 409 Conflict – Conflict

• 400 Bad Request – Bad Request

GET node definition

Request definition from the server.

GET /nodes/(ID)
Request

GET /nodes/{ID} HTTP/1.1
Accept: application/json

Response

Content-Type: application/json
{

“name”*: <DEFINITION_NAME>

“actions”*: [{ “action”*: <NAME>*,
“description”: <DESCRIPTION>,
“onstart”: <MESSAGE>,
“onsuccess”: <MESSAGE>,
“onfailure”: <MESSAGE>,
“always_execute”: [True, False],
“attributes”: { <KEY>: <VALUE>,

<KEY>: { <KEY> : <VALUE>},
<KEY>: [<VALUE>, <VALUE>]
}

},...]
}

Note: * Items are mandatory (even if value is empty list/dict)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – OK

2.8. Internals 103

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

ZTPServer Documentation, Release 1.3.2

• 400 Bad Request – Bad Request

• 404 Not Found – Not Found

PUT node startup-config

This is used to backup the startup-config from a node to the server.

PUT /nodes/(ID)/startup-config
Request

Content-Type: text/plain
<startup-config contents>

Status Codes

• 201 Created – Created

• 400 Bad Request – Bad Request

GET node startup-config

This is used to retrieve the startup-config that was backed-up from a node to the server.

GET /nodes/(ID)/startup-config
Request

Content-Type: text/plain

Response

Status: 201 Created OR 409 Conflict will both return:

Content-Type: text/plain
<startup-config contents>

Response Headers

• Content-Type – text/plain

Status Codes

• 200 OK – OK

• 400 Bad Request – Bad Request

GET actions/(NAME)

GET /actions/(NAME)
Request action from the server.

Request Example

GET /actions/add_config HTTP/1.1

Response

104 Chapter 2. Features

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

ZTPServer Documentation, Release 1.3.2

Content-Type: text/x-python
<raw action content>

Response Headers

• Content-Type – text/x-python

Status Codes

• 200 OK – OK

• 404 Not Found – Not Found

GET resource files

GET /files/(RESOURCE_PATH)
Request action from the server.

Request Examples

GET /files/images/vEOS.swi HTTP/1.1
GET /files/templates/ma1.template HTTP/1.1

Response

<raw resource contents>

:resheader Content-Type:text/plain :statuscode 200: OK :statuscode 404: Not Found

GET meta data for a resource or file

GET /meta/(actions|files|nodes)/(PATH_INFO)
Request meta-data on a file.

Example Requests

GET /meta/actions/add_config HTTP/1.1
GET /meta/files/images/EOS-4.14.5F.swi HTTP/1.1
GET /meta/nodes/001122334455/.node HTTP/1.1

Response

{
sha1: "d3852470a7328a4aad54ce030c543fdac0baa475"
size: 160

}

:resheader Content-Type:application/json :statuscode 200: OK :statuscode 500: Server Error

2.8.3 Modules

Bootstrap Client

class Node(server)

Node object which can be used by actions via: attributes.get(‘NODE’)

2.8. Internals 105

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

ZTPServer Documentation, Release 1.3.2

client
jsonrpclib.Server – jsonrpclib connect to Command API engine

api_config_cmds(cmds)
Run CLI commands via Command API, starting from config mode.

Commands are ran in order.

Parameters cmds (list) – List of CLI commands.

Returns List of Command API results corresponding to the input commands.

Return type list

api_enable_cmds(cmds, text_format=False)
Run CLI commands via Command API, starting from enable mode.

Commands are ran in order.

Parameters

• cmds (list) – List of CLI commands.

• text_format (bool, optional) – If true, Command API request will run in text mode
(instead of JSON).

Returns List of Command API results corresponding to the input commands.

Return type list

append_rc_eos_lines(lines)
Add lines to rc.eos.

Parameters lines (list) – List of bash commands

append_startup_config_lines(lines)
Add lines to startup-config.

Parameters lines (list) – List of CLI commands

classmethod bash_cmds(cmds)
Executes bash commands in order - stops on first failure.

Parameters cmds – list of bash commands

Returns first failing command (None otherwise) code: exit code for first failing command (None
otherwise) out: stdout for first failing command (None otherwise) err: stderr for first failing
command (None otherwise)

Return type cmd

create_user(user, group, passwd, root=’/persist/local/’, ssh_keys=None)
Create a local user on the bootstrapped node. If ‘ssh_keys’ are provided, they will be copied to
$HOME/.ssh/authorized_keys. Also, rc.eos will be modified to add this user on every boot. If the user pro-
vided already exists, the function will continue and install the ssh_keys (if necessary). The $HOME/.ssh
directory will be assigned 0700 permissions and the $HOME/.ssh/authorized_keys file will be assigned
0600 permissions in accord with SSH best practices.

Parameters

• user (-) – the username

• group (-) – the group assigned to the user

• passwd (-) – cleartext password

• root (-) – the path where the user’s home directory will reside

106 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

• ssh_keys (-) – (optional) public keys that will be copied to
~$HOME/.ssh/authorized_keys

Raises

• ZtpError

• - missing argument – user, group, passwd

• – useradd fails, return the error

• – ssh_keys cannot be written to ‘authorized_keys’

• – files cannot change ownership or permissions

Returns True if user created; False if otherwise

Return type bool

details()
Get details.

Returns

System details

Format:

{'model': <MODEL>,
'version': <EOS_VERSION>,
'systemmac': <SYSTEM_MAC>,
'serialnumber': <SERIAL_NUMBER>,
'neighbors': <NEIGHBORS> # see neighbors()

}

Return type dict

flash()
Get flash path.

Returns flash path

Return type string

has_startup_config()
Check whether startup-config is configured or not.

Returns True is startup-config is configured; false otherwise.

Return type bool

log_msg(msg, error=False)
Log message via configured syslog/XMPP.

Parameters

• msg (string) – Message

• error (bool, optional) – True if msg is an error; false otherwise.

neighbors()
Get neighbors.

Returns

LLDP neighbor

2.8. Internals 107

ZTPServer Documentation, Release 1.3.2

Format:

{'neighbors': {<LOCAL_PORT>:
[{'device': <REMOTE_DEVICE>,
'port': <REMOTE_PORT>}, ...],

...}}

Return type dict

rc_eos()
Get rc.eos path.

Returns rc.eos path

Return type string

retrieve_url(url, path)
Download resource from server.

If ‘path’ is somewhere on flash and ‘url’ points back to SERVER, then the client will request the metadata
for the resource from the server (in order to check whether there is enogh disk space available). If ‘url’
points to a different server, then the ‘content-length’ header will be used for the disk space checks.

Raises ZtpError – resource cannot be retrieved: - metadata cannot be retrieved from server
OR - metadata is inconsistent with request OR - disk space on flash is insufficient OR - file
cannot be written to disk

Returns startup-config path

Return type string

classmethod server_address()
Get ZTP Server URL.

Returns ZTP Server URL.

Return type string

startup_config()
Get startup-config path.

Returns startup-config path

Return type string

classmethod substitute(template, substitutions, strict=True)
Perform variable substitution on a config template.

Parameters

• template (string) – EOS configuration template

• substitutions (dict) – set of substitutions for the template

• strict (bool, optional) – If true, method will raise Exception when template variables
are missing from ‘substitutions’.

Returns template string with variable substitution

Return type string

system()
Get system information.

108 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

Returns

System information

Format:

{'model': <MODEL>,
'version': <EOS_VERSION>,
'systemmac': <SYSTEM_MAC>,
'serialnumber': <SERIAL_NUMBER>}

Return type dict

Actions

• add_config
• copy_file
• install_cli_plugin
• install_extension
• install_image
• replace_config
• send_email
• run_bash_script
• run_cli_commands

add_config

main(attributes)
Appends config section to startup-config.

This action is dual-supervisor compatible.

url
path to source config/template

substitution_mode
loose|strict (default: loose)

variables
list of value substitutions

Special_attributes: NODE: API object - see documentation for details

Example

-
action: add_config
attributes:

url: files/templates/ma1.template
variables:

ipaddress: allocate('mgmt_subnet')
name: "configure ma1"
onstart: "Starting to configure ma1"

2.8. Internals 109

ZTPServer Documentation, Release 1.3.2

onsuccess: "SUCCESS: ma1 configure"
onfailure: "FAIL: IM provisioning@example.com for help"

copy_file

main(attributes)
Copies file to the switch.

Copies file based on the values of ‘src_url’ and ‘dst_url’ attributes (‘dst_url’ should point to the destination
folder).

This action is NOT dual-supervisor compatible.

src_url
path to source file

dst_url
path to destination

mode
octal mode for destination path

overwrite
replace|if-missing|backup (default: replace)

‘overwrite’ values:

• ‘replace’: the file is copied to the switch regardless of whether there is already a file with the same
name at the destination;

• ‘if-missing’: the file is copied to the switch only if there is not already a file with the same name at
the destination; if there is, then the action is a no-op;

• ‘backup’: the file is copied to the switch; if there is already another file at the destination, that file is
renamed by appending the ‘.backup’ suffix

Special_attributes: NODE: API object - see documentation for details

Example

-
action: copy_file
always_execute: true
attributes:

dst_url: /mnt/flash/
mode: 777
overwrite: if-missing
src_url: files/automate/bgpautoinf.py

name: "automate BGP peer interface config"

install_cli_plugin

main(attributes)
Installs CliPlugin.

This action is NOT dual-supervisor compatible.

110 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

url
path to the CliPlugin

Special_attributes: NODE: API object - see documentation for details

Example

-
action: install_image
always_execute: true
attributes:

url: files/my_cli_plugin
name: "install cli plugin"

install_extension

main(attributes)
Installs extension.

If ‘force’ is set, then the dependency checks are overridden.

This action is NOT dual-supervisor compatible.

url
path to source extension file

force
ignore validation errors (default: false)

always_execute
perform copy even if file exists

Special_attributes: NODE: API object - see documentation for details

Example

-
action: install_extension
always_execute: true
attributes:

url: files/telemetry-1.0-1.rpm
name: "Install Telemetry"

install_image

main(attributes)
Installs new software image.

If the current software image is the same as the ‘version’ attribute value, then this action is a no-op. Otherwise,
the action will replace the existing software image.

For dual supervisor systems, the image on the active supervisor is used as reference.

This action is dual-supervisor compatible.

2.8. Internals 111

ZTPServer Documentation, Release 1.3.2

url
path to source image file

version
EOS version of new image file

Special_attributes: NODE: API object - see documentation for details

Example

-
action: install_image
always_execute: true
attributes:

url: files/images/vEOS.swi
version: 4.13.5F

name: "validate image"
onstart: "Starting to install image"
onsuccess: "SUCCESS: 4.13.5F installed"
onfailure: "FAIL: IM nick@example.com for help"

replace_config

main(attributes)
Replaces /mnt/flash/startup-config with new file.

This action is dual-supervisor compatible.

url
path to source config/template

Special_attributes: NODE: API object - see documentation for details

Example

-
action: replace_config
attributes:

url: files/configs/tor-startup-config
name: "tor config"

send_email

main(attributes)
Sends an email using an SMTP relay host

Generates an email from the bootstrap process and routes it through a smarthost. The parameters value expects
a dictionary with the following values in order for this function to work properly.

{
'smarthost': <hostname of smarthost>,
'sender': <from email address>
'receivers': [<array of recipients to send email to>],
'subject': <subject line of the message>,

112 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

'body': <the message body>,
'attachments': [<array of files to attach>],
'commands': [<array of commands to run and attach>]

}

The required fields for this function are smarthost, sender, and receivers. All other fields are optional.

This action is dual-supervisor compatible.

Parameters

• attributes (list) – list of attributes; use attributes.get(<ATTRIBUTE_NAME>) to read
attribute values

• node (internal) – attributes.get(‘NODE’) API: see documentation

• smarthost – hostname of smarthos>,

• sender – from email addres>

• receivers – [<array of recipients to send email to>]

• subject – subject line of the message

• body – the message body

• attachments – [<array of files to attach>]

• commands – [<array of commands to run and attach>]

Example

-
action: send_mail
attributes:

smarthost: smtp.example.com
from: noreply@example.com
subject: This is a test message from a switch in ZTP
receivers:

bob@exmple.com
helen@example.com

body: Please see the attached 'show version'
commands: show version

run_bash_script

main(attributes)
Runs a script in EOS from bash.

This action is dual-supervisor compatible.

url
path to source script/template

variables
optional – list of value substitutions (for a script template)

Special_attributes: NODE: API object - see documentation for details

2.8. Internals 113

ZTPServer Documentation, Release 1.3.2

Example

-
action: run_bash_script
attributes:

url: files/scripts/install_script
variables:

version: 1.2.3
name: 'install temp package'

run_cli_commands

main(attributes)
Runs a set of EOS commands, starting from enable mode.

This action is dual-supervisor compatible.

url
path to source command list/template

variables
optional – list of value substitutions (for a template)

Special_attributes: NODE: API object - see documentation for details

Example

-
action: run_cli_commands
attributes:

url: files/templates/ma1.template
variables:

ipaddress: allocate('mgmt_subnet')
name: 'configure ma1'

2.9 Glossary of terms

action an action is a Python script which is executed during the bootstrap process.

attribute an attribute is a variable that holds a value. attributes are used in order to customise the behaviour of actions
which are executed during the bootstrap process.

definition a definition is a YAML file that contains a collection of all actions (and associated attributes) which need
to run during the bootstrap process in order to fully provision a node

neighbordb neighbordb is a YAML file which contains a collection of patterns which can be used in order to map
nodes to definitions

node a node is a EOS instance which is provisioned via ZTPServer. A node is uniquely identified by its unique_id
(serial number or system MAC address) and/or unique position in the network.

pattern a pattern is a YAML file which describes a node in terms of its unique_id (serial number or system MAC)
and/or location in the network (neighbors)

114 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

resource pool a resource pool is a is a set of resources which can be allocated on the server for the clients. For
example, a YAML file can provide a mapping between a set or resources and the nodes to which some of the
resources might have been allocated to (the nodes are uniquely identified via their system MAC).

unique_id the unique identifier for a node. This can be configured, globally, to be the serial number (default) or
system MAC address in the ztpserver.conf file

2.10 Support

• Contact
• Known caveats
• Releases
• Roadmap highlights

– Release 1.5
– Release 2.0

• Tutorial
• Other Resources

2.10.1 Contact

ZTPServer is an Arista-led open source community project. Users and developers are encouraged to contribute to the
project. See CONTRIBUTING for more details.

Before requesting support, please collect the necessary data to include. See Before Requesting Support.

Commercial support may be purchased through your Arista account team.

Community-based support is available through:

• eosplus forum

• eosplus-dev@arista.com.

• IRC: irc.freenode.net#arista

Customization, and integration services are available through the EOS+ Consulting Services team at Arista Networks,
Inc. Contact eosplus-dev@arista.com or your account team for details.

2.10.2 Known caveats

The authoritative state for any known issue can be found in GitHub issues.

• Only a single entry in a file-based resource pool may be allocated to a node (using the
allocate(resource_pool plugin)).

• Users MUST be aware of the required EOS version for various hardware components (including transcievers).
Neighbor (LLDP) validation may fail if a node boots with an EOS version that does not support the installed
hardware. Moreoever, some EOS features configured via ZTPServer might be unsupported. Please refer to the
Release Notes for more compatability information and to the Transceiver Guide .

• If a lot of nodes are being booted at the same time and they all share the same file-based resource files (using
the allocate(resource_pool plugin)), retrieving the definition for each might be slow (5s or longer) if
the resource files are very large. The workaround is to use another plugin or custom actions and allocate the
resources from alternative sources (other than shared files) - e.g. SQL

2.10. Support 115

https://github.com/arista-eosplus/ztpserver/blob/develop/CONTRIBUTING.md
https://groups.google.com/forum/#!forum/eosplus
mailto:eosplus-dev@arista.com
http://arista.com/
http://arista.com/
mailto:eosplus-dev@arista.com
https://github.com/arista-eosplus/ztpserver/issues
http://www.arista.com/assets/data/pdf/Transceiver-Guide.pdf

ZTPServer Documentation, Release 1.3.2

2.10.3 Releases

The authoritative state for any known issue can be found in GitHub issues.

Release 1.4

(Published August, 2015)

The authoritative state for any known issue can be found in GitHub issues.

Enhancements

• Plugin infrastructure for resource pool allocation (121)

• Use the order of entries in the file for allocating resources from a file via the allocate plugin (319)

• Documenatation updates:

– Plugin infrastructure for resource pool allocation (121)

Bug fixes

• Starting ZTPServer fails because pkg_resources.DistributionNotFound: mock (318)

• Bootstrap file cannot be read by server (308)

• Bootstrap script fails because of broken pipe in EOS-4.14.5+ (312)

Release 1.3.2

(Published March, 2015)

The authoritative state for any known issue can be found in GitHub issues.

Bug fixes

• Prevented .node file from becoming corrupted on the server (298)

• Added .node filename to server-side logs (297)

• Change refresh_ztps script default to “master” Refresh_ztps will, by default, update the installation to
the latest released version. Previously, the default was to the development branch which may still be
accomplished with refresh_ztps --branch develop.

• Fixes to RPM packaging:

– Quieted chcon during install (295)

– Fixed issue where config files may not be kept during upgrade (296)

– Fixed issue with native rpmbuild due to changes in handling VERSION (294)

• Documentation updates:

– Troubleshooting chapter (272)

– Additional content in the ZTP Server Cookbook (289)

116 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/issues
https://github.com/arista-eosplus/ztpserver/issues
https://github.com/arista-eosplus/ztpserver/issues/121
https://github.com/arista-eosplus/ztpserver/issues/319
https://github.com/arista-eosplus/ztpserver/issues/121
https://github.com/arista-eosplus/ztpserver/issues/318
https://github.com/arista-eosplus/ztpserver/issues/308
https://github.com/arista-eosplus/ztpserver/issues/312
https://github.com/arista-eosplus/ztpserver/issues
https://github.com/arista-eosplus/ztpserver/issues/298
https://github.com/arista-eosplus/ztpserver/issues/297
https://github.com/arista-eosplus/ztpserver/issues/295
https://github.com/arista-eosplus/ztpserver/issues/296
https://github.com/arista-eosplus/ztpserver/issues/294
https://github.com/arista-eosplus/ztpserver/issues/272
https://github.com/arista-eosplus/ztpserver/issues/289

ZTPServer Documentation, Release 1.3.2

– ZTP Server benchmarking results

Release 1.3.1

(Published February, 2015)

The authoritative state for any known issue can be found in GitHub issues.

Bug fixes

• fixes pip install/uninstall issues

Release 1.3

(Published February, 2015)

The authoritative state for any known issue can be found in GitHub issues.

Enhancements

• ztps --validate validates:

– neighbordb syntax and patterns

– resource files syntax

– definition files syntax

– pattern files syntax

$ ztps --validate
Validating neighbordb ('/usr/share/ztpserver/neighbordb')...
2015-01-13 18:03:55,006:ERROR:[validators:111] N/A: PatternValidator validation error: missing attribute: definition
2015-01-13 18:03:55,006:ERROR:[validators:111] N/A: NeighbordbValidator validation error: invalid patterns: set([(0, 's7151')])

ERROR: Failed to validate neighbordb patterns
Invalid Patterns (count: 1)

[0] s7151

Validating definitions...
Validating /usr/share/ztpserver/definitions/leaf.definition... Ok!
Validating /usr/share/ztpserver/definitions/leaf-no_vars.definition... Ok!

Validating resources...
Validating /usr/share/ztpserver/resources/leaf_man_ip... Ok!
Validating /usr/share/ztpserver/resources/leaf_spine_ip...
ERROR: Failed to validate /usr/share/ztpserver/resources/leaf_spine_ip
validator: unable to deserialize YAML data:
10.0.0.51/24: null
10.0.0.53/24: null
dfdsf dsfsd
10.0.0.54/24: JPE14140273

Error:
while scanning a simple key

2.10. Support 117

https://github.com/arista-eosplus/ztpserver/issues
https://github.com/arista-eosplus/ztpserver/issues

ZTPServer Documentation, Release 1.3.2

in "<string>", line 3, column 1:
dfdsf dsfsd
could not found expected ':'
in "<string>", line 5, column 1:
10.0.0.54/24: JPE14140273
^

Validating nodes...
Validating /usr/share/ztpserver/nodes/JAS12170010/definition... Ok!
Validating /usr/share/ztpserver/nodes/JAS12170010/pattern... Ok!

• run_bash_script action allows users to run bash scripts during the bootstrap process

• run_cli_commands action allows users to run CLI commands during the bootstrap process

• config-handlers can be used in order to trigger scripts on the server on PUT startup-config request completion

• The auto replace_config action which is added to the definition whenever a startup-config file is present in
a node’s folder is now the first action in the definition which is sent to the client. This enables performing
configuration updates during ZTR (Zero Touch Replacement) via ‘always_execute’ add_config actions in the
definition file. One particularly interesting use-case is replacing one node with another one of a different model.

• ztps --clear-resources clears all resource allocations

• server-side logs are timestamped by default

• ZTP Server shows running version on-startup

ztps
2015-02-09 16:50:35,922:INFO:[app:121] Starting ZTPServer v1.3.0...
...

Bug fixes

• upgrades/downgrades to/from v1.3+ will preserve the configuration files

– ztpserver.conf, ztpserver.wsgi, bootstrap.conf and neighbordb are preserved (new default files are installed
under <filename>.new)

– all definitions, config-handlers, files, node folder, resources and files are preserved

– bootstrap file, actions and libraries are always overwritten

• bootstrap.conf now supports specifying empty config sections:

logging:
...

xmpp:

logging:
xmpp:

...

Release 1.2

(Published December, 2014)

The authoritative state for any known issue can be found in GitHub issues.

118 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/issues

ZTPServer Documentation, Release 1.3.2

Enhancements

• Enhance neighbordb documentation (255)

• In case of failure, bootstrap cleanup removes temporary files that were copied onto switch during provisioning (253)

• “ERROR: unable to disable COPP” should be a warning on old EOS platforms (242) A detailed warning
will be displayed if disabling COPP fails (instead of an error).

• Enhance documentation for open patterns(239)

• Document guidelines on how to test ZTPS (235)

• Document http://www.yamllint.com/ as a great resource for checking YAML files syntax (234)

• Make ”name” an optional attribute in local pattern files (233) node pattern file can contain only the inter-
faces directive now e.g.

interfaces:
- any:

device: any
port: any

• Documentation should clarify that users must be aware of the EOS version in which certain transceivers were introduced (232)

• Enhance the Apache documentation (231)

• Enhance documentation related to config files (229)

• Disable meta information checks for remote URLs (224)

– if URL points to ZTP server and destination is on flash, use metadata request to compute disk space (other
metadata could be added here in the future)

– it URL points to a remote server and destination is on flash, use ‘content-length’ to compute disk space -
this will skip the metadata request

• Assume port 514 for remote syslog, if missing from bootstrap.conf (218)

When configuring remote syslog destinations in bootstrap.conf, the port number is not mandatory
anymore (if missing, a default value of 514 is assumed).

e.g.

logging:
- destination: pcknapweed
level: DEBUG

• Deal more gracefully with YAML errors in neighbordb (216) YAML serialization errors are now exposed
in ZTPS logs:

DEBUG: [controller:170] JPE14140273: running post_node
ERROR: [topology:83] JPE14140273: failed to load file: /usr/share/ztpserver/neighbordb
ERROR: [topology:116] JPE14140273: failed to load neighbordb:
expected a single document in the stream

in "<string>", line 26, column 1:
patterns:
^

but found another document
in "<string>", line 35, column 1:

2.10. Support 119

https://github.com/arista-eosplus/ztpserver/issues/255
https://github.com/arista-eosplus/ztpserver/issues/253
https://github.com/arista-eosplus/ztpserver/issues/242
https://github.com/arista-eosplus/ztpserver/issues/239
https://github.com/arista-eosplus/ztpserver/issues/235
http://www.yamllint.com/
https://github.com/arista-eosplus/ztpserver/issues/234
https://github.com/arista-eosplus/ztpserver/issues/233
https://github.com/arista-eosplus/ztpserver/issues/232
https://github.com/arista-eosplus/ztpserver/issues/231
https://github.com/arista-eosplus/ztpserver/issues/229
https://github.com/arista-eosplus/ztpserver/issues/224
https://github.com/arista-eosplus/ztpserver/issues/218
https://github.com/arista-eosplus/ztpserver/issues/216

ZTPServer Documentation, Release 1.3.2

^
DEBUG: [controller:182] JPE14140273: response to post_node: {'status': 400, 'body': '', 'content_type': 'text/html'}
s7056.lab.local - - [03/Nov/2014 21:05:33] "POST /nodes HTTP/1.1" 400 0

• Deal more gracefully with DNS/connectivity errors while trying to access remote syslog servers (215)
Logging errors (e.g. bogus destination) will not be automatically logged by the bootstrap script. In order
to debug logging issues, simply uncomment the following lines in the bootstrap script:

#---------------------------------SYSLOG----------------------
Comment out this section in order to enable syslog debug
logging
logging.raiseExceptions = False
#---------------------------------XMPP------------------------

Example of output which is suppressed by default:

Traceback (most recent call last):
File "/usr/lib/python2.7/logging/handlers.py", line 806, in emit
self.socket.sendto(msg, self.address)

gaierror: [Errno -2] Name or service not known
Logged from file bootstrap, line 163

• Make ”name” an optional attribute in node definitions (214) Definitions under /nodes/<NODE> do not
have to have a ‘name’ attribute.

• Increase HTTP timeout in bootstrap script (212) HTTP timeout in bootstrap script is now 30s.
https://github.com/arista-eosplus/ztpserver/issues/246 tracks making that configurable via bootstrap.conf.
In the meantime, the workaround for changing it is manually editing the bootstrap file.

• Remove fake prefixes from client and actions function names in docs (204)

• Tips and tricks - clarify vEOS version for both ways to set system MAC (203)

• Enhance logging for “copy_file” action (187)

• Local interface pattern specification should also allow management interfaces (185) Local interface al-
lows for:

– management interface or interface range, using either mXX, maXX, MXX, MaXX, ManagementXX
(where XX is the range)

– management + ethernet specification on the same line: Management1-3,Ethernet3,5,6/7

• Bootstrap script should cleanup on failure (176)

$ python bootstrap --help
usage: bootstrap [options]

optional arguments:
-h, --help show this help message and exit
--no-flash-factory-restore, -n

Do NOT restore flash config to factory defaul

Added extra command-line option for the bootstrap script for testing.

Default behaviour:

– clear rc.eos, startup-config, boot-extensions (+folder) at the beginning of the process

– in case of failure, delete all new files added to flash

‘-n’ behaviour:

– leave rc.eos, startup-config, boot-extensions (+folder) untouched

120 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/issues/215
https://github.com/arista-eosplus/ztpserver/issues/214
https://github.com/arista-eosplus/ztpserver/issues/212
https://github.com/arista-eosplus/ztpserver/issues/246
https://github.com/arista-eosplus/ztpserver/issues/204
https://github.com/arista-eosplus/ztpserver/issues/203
https://github.com/arista-eosplus/ztpserver/issues/187
https://github.com/arista-eosplus/ztpserver/issues/185
https://github.com/arista-eosplus/ztpserver/issues/176

ZTPServer Documentation, Release 1.3.2

– instead, bootstrap will create the new files corresponding to the above, with the ”.ztp” suffix

– never remove any files from flash at the end of the process, regardless of the outcome

• Allow posting the startup-config to a node’s folder, even if no startup-config is already present (169)

• Remove definition line from auto-generated pattern (102) When writing the pattern file in the node’s folder
(after a neighbordb match):

– ‘definition’ line is removed

– ‘variables’ and ‘node’ are only written if non-empty

– ‘name’ (that’s the pattern’s name) and ‘interfaces’ are always written

Fixed

• server_url requires trailing slash “/” when adding subdirectory (244)

• Error when doing static node provisioning using replace_config (241)

• XMPP messages are missing the system ID (236) XMPP messages now contain the serial number of the
switch sending the message. ‘N/A’ is shown if the serial number is not available or empty.

• Fix “node:” directive behaviour in neighbordb (230)

The following ‘patterns’ are now valid in neighbordb:

– name, definition, node [,variables]

– name, definition, interfaces [,variables]

– name, definition, node, interfaces [,variables]

• node.retrieve_resource should be a no-op if the file is already on the disk (225) When computing the avail-
able disk space on flash for saving a file, the length of the file which is about to be overwritten is also
considered.

• Ignore content-type when retrieving a resource from a remote server or improve on the error message (222)
If a resource is retrieved from some other server (which is NOT the ZTPServer itself), then we allow any
content-type.

• ztpserver.wsgi is not installed by setup.py (220)

• ztps –validate broken in 1.1 (217)

ztps --validate PATH_TO_NEIGHBORDB

can be used in order to validate the syntax of a neighbordb file.

• install_extension action copies the file to the switch but doesn’t install it (206)

• Bootstrap XMPP logging - client fails to create the specified MUC room (148) In order for XMPP logging
to work, a non-EOS user need to be connected to the room specified in bootstrap.conf, before the ZTP
process starts. The room has to be created (by the non-EOS user), before the bootstrap client starts logging
the ZTP process via XMPP.

• ZTPS server fails to write .node because lack of permissions (126)

Release 1.1

(Published August, 2014)

The authoritative state for any known issue can be found in GitHub issues.

2.10. Support 121

https://github.com/arista-eosplus/ztpserver/issues/169
https://github.com/arista-eosplus/ztpserver/issues/102
https://github.com/arista-eosplus/ztpserver/issues/244
https://github.com/arista-eosplus/ztpserver/issues/241
https://github.com/arista-eosplus/ztpserver/issues/236
https://github.com/arista-eosplus/ztpserver/issues/230
https://github.com/arista-eosplus/ztpserver/issues/225
https://github.com/arista-eosplus/ztpserver/issues/222
https://github.com/arista-eosplus/ztpserver/issues/220
https://github.com/arista-eosplus/ztpserver/issues/217
https://github.com/arista-eosplus/ztpserver/issues/206
https://github.com/arista-eosplus/ztpserver/issues/148
https://github.com/arista-eosplus/ztpserver/issues/126
https://github.com/arista-eosplus/ztpserver/issues

ZTPServer Documentation, Release 1.3.2

Enhancements

• V1.1.0 docs (181) Documentation has been completely restructured and is now hosted at
http://ztpserver.readthedocs.org/.

• refresh_ztps - util script to refresh ZTP Server installation (177) /utils/refresh_ztps can be used in order to
automatically refresh the installation of ZTP Server to the latest code on GitHub. This can be useful in
order to pull bug fixes or run the latest version of various development branches.

• Et49 does not match Ethernet49 in neighbordb/pattern files (172) The local interface in an interface pattern
does not have to use the long interface name. For example, all of the following will be treated similarly:
Et1, e1, et1, eth1, Eth1, ethernet1, Ethernet1.

Note that this does not apply to the remote interface, where different rules apply.

• Improve server-side log messages when there is no match for a node on the server (171)

• Improve error message on server side when definition is missing from the definitions folder (170)

• neighbordb should also support serialnumber as node ID (along with system MAC) (167) Server now
supports two types of unique identifiers, as specified in ztpserver.conf:

UID used in the /nodes structure (either systemmac or serialnumber)
identifier = serialnumber

The configuration is global and applies to a single run of the server (neighbordb, resource files, nodes’
folders, etc.).

• serialnumber should be the default identifier instead of systemmac (166) The default identifier in
ztpserver.conf is the serial number. e.g.

UID used in the /nodes structure (either systemmac or serialnumber)
identifier = serialnumber

This is different from v1.0, where the systemmac was the default.

• Document which actions are dual-sup compatible and which are not (165) All actions now document
whether they are dual-sup compatible or not. See documentation for the details.

• dual-sup support for install_image action (164) install_image is now compatible with dual-sup systems.

• Resource pool allocation should use the identifier instead of the systemmac (162) The values in the re-
source files will be treated as either system MACs or serial numbers, depending on what identifier is
configured in the global configuration file.

• Document actions APIs (157) The API which can be used by actions is now documented in the documentation
for the bootstrap script module.

• Get rid of return codes in bootstrap script (155)

• Bootstrap script should always log a detailed message before exiting (153) bootstrap script will log the rea-
son for exiting, instead of an error code.

• Client should report what the error code means (150)

• Improve server logs when server does not know about the node (145)

• Configurable verbosity for logging options (server side) (140) Bootstrap configuration file can now specify
the verbosity of client-side logs:
...
xmpp:
username: ztps
password: ztps

122 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/pull/181
http://ztpserver.readthedocs.org/
https://github.com/arista-eosplus/ztpserver/issues/177
https://github.com/arista-eosplus/ztpserver/issues/172
https://github.com/arista-eosplus/ztpserver/issues/171
https://github.com/arista-eosplus/ztpserver/issues/170
https://github.com/arista-eosplus/ztpserver/issues/167
https://github.com/arista-eosplus/ztpserver/issues/166
https://github.com/arista-eosplus/ztpserver/issues/165
https://github.com/arista-eosplus/ztpserver/issues/164
https://github.com/arista-eosplus/ztpserver/issues/162
https://github.com/arista-eosplus/ztpserver/issues/157
https://github.com/arista-eosplus/ztpserver/issues/155
https://github.com/arista-eosplus/ztpserver/issues/153
https://github.com/arista-eosplus/ztpserver/issues/150
https://github.com/arista-eosplus/ztpserver/issues/145
https://github.com/arista-eosplus/ztpserver/issues/140

ZTPServer Documentation, Release 1.3.2

domain: pcknapweed.lab.local
msg_type : debug
rooms:

- ztps-room

The allowed values are:

– debug: verbose logging

– info: log only messages coming from the server (configured in definitions)

The information is transmitted to the client via the bootstrap configuration request:

####GET logging configuration
Returns the logging configuration from the server.

GET /bootstrap/config

Request

Content-Type: text/html

Response

Status: 200 OK
Content-Type: application/json
{

“logging”*: [{
“destination”: “file:/<PATH>” | “<HOSTNAME OR IP>:<PORT>”, //localhost enabled

//by default
“level”*: <DEBUG | CRITICAL | ...>,

}]
},

“xmpp”*:{
“server”: <IP or HOSTNAME>,
“port”: <PORT>, // Optional, default 5222
“username”*: <USERNAME>,
“domain”*: <DOMAIN>,
“password”*: <PASSWORD>,
“nickname”: <NICKNAME>, // REMOVED
“rooms”*: [<ROOM>, ...]
“msg_type”: [“info” | “debug”] // Optional, default “debug”

}
}

>**Note**: * Items are mandatory (even if value is empty list/dict)

P.S. (slightly unrelated) The nickname configuration has been deprecated (serialnumber is used instead).

• Configurable logging levels for xmpp (139) bootstrap.conf:

logging:
...
xmpp:
...
nickname: ztps // (unrelated) this was removed - using serial number instead
msg_type: info // allowed values ['info', 'debug']

If msg_type is set to ‘info’, only log via XMPP error messages and ‘onstart’, ‘onsuccess’ and ‘onfailure’

2.10. Support 123

https://github.com/arista-eosplus/ztpserver/issues/139

ZTPServer Documentation, Release 1.3.2

error messages (as configured in the definition).

• Bootstrap should rename LLDP SysDescr to “provisioning” while executing or failing (138)

• Test XMPP for multiple nodes being provisioned at the same time (134)

• Server logs should include ID (MAC/serial number) of node being provisioned (133) Most of the server
logs will not be prefixed by the identifier of the node which is being provisioned - this should make
debugging environments where multiple nodes are provisioned at the same time a lot easier.

• Use serial number instead of system MAC as the unique system ID (131)

• Bootstrap script should disable copp (122)

• Bootstrap script should check disk space before downloading any resources (118) Bootstrap script will re-
quest the meta information from server, whenever it attempts to save a file to flash. This information will
be used in order to check whether enough disk space is available for downloading the resource.

####GET action metadata
Request action from the server.

GET /meta/actions/NAME

Request

Content-Type: text/html

Response

Status: 200 OK
Content-Type: application/json
{

“size”*: <SIZE IN BYTES>,
“sha1”: <HASH STRING>

}

>**Note**: * Items are mandatory (even if value is empty list/dict)

Status: 404 Not found
Content-Type: text/html

Status: 500 Internal server error // e.g. permissions issues on server side
Content-Type: text/html

• ztps should check Python version and report a sane error is incompatible version is being used to run it (110)
ztps reports error if it is ran on a system with an incompatible Python version installed.

• Do not hardcode Python path (109)

• Set XMPP nickname to serial number (106) Serial number is used as XMPP presence/nickname. For vEOS
instances which don’t have one configured, systemmac is used instead.

• Send serial number as XMPP presence (105) Serial number is used as XMPP presence/nickname. For vEOS
instances which don’t have one configured, systemmac is used instead.

• Support for EOS versions < 4.13.3 (104) ZTP Server bootstrap script now supports any EOS v4.12.x or later.

• neighbordb should not be cached (97) Neighbordb is not cached on the server side. This means that any
updates to it do not require a server restart anymore.

• Definitions/actions should be loaded form disk on each GET request (87) Definitions and actions are not
cached on the server side. This means that any updates to them do not require a server restart anymore.

124 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/issues/138
https://github.com/arista-eosplus/ztpserver/issues/134
https://github.com/arista-eosplus/ztpserver/issues/133
https://github.com/arista-eosplus/ztpserver/issues/131
https://github.com/arista-eosplus/ztpserver/issues/122
https://github.com/arista-eosplus/ztpserver/issues/118
https://github.com/arista-eosplus/ztpserver/issues/110
https://github.com/arista-eosplus/ztpserver/issues/109
https://github.com/arista-eosplus/ztpserver/issues/106
https://github.com/arista-eosplus/ztpserver/issues/105
https://github.com/arista-eosplus/ztpserver/issues/104
https://github.com/arista-eosplus/ztpserver/issues/97
https://github.com/arista-eosplus/ztpserver/issues/87

ZTPServer Documentation, Release 1.3.2

• Fix all pylint warnings (83)

• add_config action should also accept server-root-relative path for the URL (71) ‘url’ atrribute in
add_config action can be either a URL or a local server path.

• install_image action should also accept server-root-relative path for the URL (70) ‘url’ atrribute in in-
stall_image action can be either a URL or a local server path.

• Server logs should be timestamped (63) All server-side logs now contain a timestamp. Use ‘ztps –debug’ for
verbose debug output.

• After installing ZTPServer, there should be a dummy neighbordb (with comments and examples) and a dummy resource (with comments and examples) in /usr/share/ztpserver (48)

• need test coverage for InterfacePattern (42)

• test_topology must cover all cases (40)

Resolved issues

• Syslog messages are missing system-id (vEOS) (184) All client-side log message are prefixed by the serial
number for now (regardless of what the identifier is configured on the server).

For vEOS, if the system does not have a serial number configured, the system MAC will be used instead.

• No logs while executing actions (182)

• test_repository.py is leaking files (174)

• Allocate function will return some SysMac in quotes, others not (137)

• Actions which don’t require any attributes are not supported (129)

• Static pattern validation fails in latest develop branch (128)

• Have a way to disable topology validation for a node with no LLDP neighbors (127) COPP is disabled
during the bootstrap process for EOS v4.13.x and later. COPP is not supported for older releases.

• Investigate “No loggers could be found for logger sleekxmpp.xmlstream.xmlstream” error messages on client side (120)

• ZTPS should not fail if no variables are defined in neighbordb (114)

• ZTPS should not fail if neighbordb is missing (113)

• ZTPS installation should create dummy neighbordb (112) ZTP Server install will create a placeholder
neighbordb with instructions.

• Deal more gracefully with invalid YAML syntax in resource files (75)

• Server reports AttributeError if definition is not valid YAML (74)

• fix issue with Pattern creation from neighbordb (44)

2.10.4 Roadmap highlights

The authoritative state, including the intended release, for any known issue can be found in GitHub issues. The
information provided here is current at the time of publishing but is subject to change. Please refer to the latest
information in GitHub issues by filtering on the desired milestone.

2.10. Support 125

https://github.com/arista-eosplus/ztpserver/issues/83
https://github.com/arista-eosplus/ztpserver/issues/71
https://github.com/arista-eosplus/ztpserver/issues/70
https://github.com/arista-eosplus/ztpserver/issues/63
https://github.com/arista-eosplus/ztpserver/issues/48
https://github.com/arista-eosplus/ztpserver/issues/42
https://github.com/arista-eosplus/ztpserver/issues/40
https://github.com/arista-eosplus/ztpserver/issues/184
https://github.com/arista-eosplus/ztpserver/issues/182
https://github.com/arista-eosplus/ztpserver/issues/174
https://github.com/arista-eosplus/ztpserver/issues/137
https://github.com/arista-eosplus/ztpserver/issues/129
https://github.com/arista-eosplus/ztpserver/issues/128
https://github.com/arista-eosplus/ztpserver/issues/127
https://github.com/arista-eosplus/ztpserver/issues/120
https://github.com/arista-eosplus/ztpserver/issues/114
https://github.com/arista-eosplus/ztpserver/issues/113
https://github.com/arista-eosplus/ztpserver/issues/112
https://github.com/arista-eosplus/ztpserver/issues/75
https://github.com/arista-eosplus/ztpserver/issues/74
https://github.com/arista-eosplus/ztpserver/issues/44
https://github.com/arista-eosplus/ztpserver/issues
https://github.com/arista-eosplus/ztpserver/milestones

ZTPServer Documentation, Release 1.3.2

Release 1.5

Target: January 2016

• topology-based ZTR (103)

• ZTPServer Cookbook - advanced topics (289)

• benchmark scale tests (261)

Release 2.0

Target: March 2016

• configure HTTP timeout in bootstrap.conf (246)

• all requests from the client should contain the unique identifier of the node (188)

• dual-sup support for install_extension action (180)

• dual-sup support for install_cli_plugin action (179)

• dual-sup support for copy_file action (178)

• action for arbitrating between MLAG peers (141)

• plugin infrastructure for resource pool allocation (121)

• md5sum checks for all downloaded resources (107)

• topology-based ZTR (103)

2.10.5 Tutorial

See https://eos.arista.com/quick-and-easy-veos-lab-setup/.

2.10.6 Other Resources

ZTPServer documentation and other reference materials are below:

• GitHub ZTPServer Repository

• ZTPServer wiki

• Packer VM build process

• ZTPServer Python (PyPI) package

• YAML Code Validator

• ZTPServer WSGI Benchmarking

2.11 Troubleshooting

126 Chapter 2. Features

https://github.com/arista-eosplus/ztpserver/pull/103
https://github.com/arista-eosplus/ztpserver/pull/289
https://github.com/arista-eosplus/ztpserver/pull/261
https://github.com/arista-eosplus/ztpserver/pull/246
https://github.com/arista-eosplus/ztpserver/pull/188
https://github.com/arista-eosplus/ztpserver/pull/180
https://github.com/arista-eosplus/ztpserver/pull/179
https://github.com/arista-eosplus/ztpserver/pull/178
https://github.com/arista-eosplus/ztpserver/pull/141
https://github.com/arista-eosplus/ztpserver/pull/121
https://github.com/arista-eosplus/ztpserver/pull/107
https://github.com/arista-eosplus/ztpserver/pull/103
https://eos.arista.com/quick-and-easy-veos-lab-setup/
https://github.com/arista-eosplus/ztpserver
https://github.com/arista-eosplus/ztpserver/wiki
https://github.com/arista-eosplus/packer-ztpserver
https://pypi.python.org/pypi/ztpserver
http://yamllint.com/
https://eos.arista.com/ztpserver-benchmarking-the-webserver-gateway-interface

ZTPServer Documentation, Release 1.3.2

• Basics
– Updating to the latest Release is strongly encouraged
– If the switch is not attempting Zero Touch Provisioning
– Validate the ZTP Server configuration syntax
– Other troubleshooting steps

• Before Requesting Support
– Version and Install method
– Server-side logs
– Client-side logs
– Configuration Files

2.11.1 Basics

When the ZTP process isn’t behaving as expected, there are some basics that should be checked regularly.

Updating to the latest Release is strongly encouraged

ZTP Server is continually being enhanced and improved and its entirely possible that the issue you’ve encountered
has already been addressed, either in the documentation such as Tips and tricks, or in the code, itself. Therefore, we
strongly encourage anyone experiencing difficulty to reproduce the issue on the latest release version before opening
an issue or requesting support. See Upgrading.

If the switch is not attempting Zero Touch Provisioning

Check whether ZTP has been disabled on the switch:

Arista#show zerotouch

Validate the ZTP Server configuration syntax

Many errors are simply due to typos or other syntax issues in config files. It is good practice to use the –validate option
to ztps and to paste configs in to http://yamllint.com/ to ensure they are well-formed YAML:

[user@ztpserver]$ ztps --validate-config

Other troubleshooting steps

A number of other troubleshooting steps including how to specify the separate apache log files just for ZTP Server,
and how to do a test run of ztpserver without reloading a switch are located on the Tips and tricks page.

2.11.2 Before Requesting Support

Before requesting support, it is important to perform the following steps to collect sufficient data to reduce information
requests and enable timely resolution.

2.11. Troubleshooting 127

ZTPServer Documentation, Release 1.3.2

Version and Install method

If not already recorded in the logs, please execute ztps --version and specify whether your installation was from
source (github), pip, RPM, or a packer-ztpserver canned VM.

Server-side logs

The location of server-side logs may vary depending on your specific environment.

• If running ZTP Server via Apache, check the VirtualHost definition for CustomLog and ErrorLog entries, oth-
erwise, look in the default Apache logs. On Fedora, those will be in /var/log/httpd/

• If running the standalone ztps binary, a good choice for debugging, please include the --debug option. Using
ztps --debug 2>&1 | tee ztpserver.log will log the output to both the screen and a file.

Client-side logs

Ensure the bootstrap client is configured to log to syslog or XMPP via /usr/share/ztpserver/bootstrap/bootstrap.conf
and include that output. Attempting to collect client side logs from the console frequently results in missing informa-
tion due to scroll buffers or line length.

Configuration Files

Please, also, include the files in /etc/ztpserver/ and /usr/share/ztpserver/ directories. tar czvf
my_ztpserver_config.tgz /etc/ztpserver/ /usr/share/ztpserver/

2.12 License

Copyright (c) 2013-2015, Arista Networks All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the Arista Networks nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

128 Chapter 2. Features

ZTPServer Documentation, Release 1.3.2

2.12.1 Third party

Requests v2.3.0: HTTP for Humans

Copyright 2014 Kenneth Reitz

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

2.12. License 129

http://www.apache.org/licenses/LICENSE-2.0

ZTPServer Documentation, Release 1.3.2

130 Chapter 2. Features

HTTP Routing Table

/actions
GET /actions/(NAME), 104

/bootstrap
GET /bootstrap, 101
GET /bootstrap/config, 102

/files
GET /files/(RESOURCE_PATH), 105

/meta
GET /meta/(actions|files|nodes)/(PATH_INFO),

105

/nodes
GET /nodes/(ID), 103
GET /nodes/(ID)/startup-config, 104
POST /nodes, 102
PUT /nodes/(ID)/startup-config, 104

131

ZTPServer Documentation, Release 1.3.2

132 HTTP Routing Table

Python Module Index

a
actions.add_config, 109
actions.copy_file, 110
actions.install_cli_plugin, 110
actions.install_extension, 111
actions.install_image, 111
actions.replace_config, 112
actions.run_bash_script, 113
actions.run_cli_commands, 114
actions.send_email, 112

c
client.bootstrap, 105

133

ZTPServer Documentation, Release 1.3.2

134 Python Module Index

Index

A
action, 114
actions.add_config (module), 109
actions.copy_file (module), 110
actions.install_cli_plugin (module), 110
actions.install_extension (module), 111
actions.install_image (module), 111
actions.replace_config (module), 112
actions.run_bash_script (module), 113
actions.run_cli_commands (module), 114
actions.send_email (module), 112
always_execute (in module actions.install_extension),

111
api_config_cmds() (Node method), 106
api_enable_cmds() (Node method), 106
append_rc_eos_lines() (Node method), 106
append_startup_config_lines() (Node method), 106
attribute, 114

B
bash_cmds() (client.bootstrap.Node class method), 106

C
client (Node attribute), 105
client.bootstrap (module), 105
create_user() (Node method), 106

D
definition, 114
details() (Node method), 107
dst_url (in module actions.copy_file), 110

F
flash() (Node method), 107
force (in module actions.install_extension), 111

H
has_startup_config() (Node method), 107

L
log_msg() (Node method), 107

M
main() (in module actions.add_config), 109
main() (in module actions.copy_file), 110
main() (in module actions.install_cli_plugin), 110
main() (in module actions.install_extension), 111
main() (in module actions.install_image), 111
main() (in module actions.replace_config), 112
main() (in module actions.run_bash_script), 113
main() (in module actions.run_cli_commands), 114
main() (in module actions.send_email), 112
mode (in module actions.copy_file), 110

N
neighbordb, 114
neighbors() (Node method), 107
node, 114
Node (class in client.bootstrap), 105

O
overwrite (in module actions.copy_file), 110

P
pattern, 114

R
rc_eos() (Node method), 108
resource pool, 115
retrieve_url() (Node method), 108

S
server_address() (client.bootstrap.Node class method),

108
src_url (in module actions.copy_file), 110
startup_config() (Node method), 108
substitute() (client.bootstrap.Node class method), 108
substitution_mode (in module actions.add_config), 109
system() (Node method), 108

135

ZTPServer Documentation, Release 1.3.2

U
unique_id, 115
url (in module actions.add_config), 109
url (in module actions.install_cli_plugin), 110
url (in module actions.install_extension), 111
url (in module actions.install_image), 111
url (in module actions.replace_config), 112
url (in module actions.run_bash_script), 113
url (in module actions.run_cli_commands), 114

V
variables (in module actions.add_config), 109
variables (in module actions.run_bash_script), 113
variables (in module actions.run_cli_commands), 114
version (in module actions.install_image), 112

136 Index

	Highlights
	Features
	Overview
	Installation
	Startup
	Configuration
	Examples
	ZTPServer Cookbook
	Tips and tricks
	Internals
	Glossary of terms
	Support
	Troubleshooting
	License

	HTTP Routing Table
	Python Module Index

